
Build Themes and Use WordPress
to Create Amazing Sites

HOW TO BE A

ROCKSTAR
WordPress Designer

Collis Ta’eed & Harley Alexander

This is a complete resource for
freelancers, new and old. If you’re an
experienced freelancer, like I am,
you’ll still find plenty in here you
didn’t know.
Leo Babauta

Collis & Cyan created the best blog
on the web for freelancers, now they
have written the best book available
for freelancers.

If you are a freelancer, or hope to be,
then you need this book.

Written by the authors of the
world’s most popular freelancing
blog FreelanceSwitch.com, this
essential guide to freelancing
dispenses wisdom, advice and
guidance on all aspects of going
solo. Thoughtful, insightful and with
knowledge borne of the authors’
experience, it’s a must read for
anyone taking on contract work.

Chris Garrett

H
O

W
 TO

 BE
 A

 R
O

C
K

ST
A

R
 F

R
E

E
L

A
N

C
E

R

Rockablepress.com
Envato.com

© Rockable Press 2008

All rights reserved. No part of this publication may be
reproduced or redistributed in any form without
the prior written permission of the publishers.

http://Rockablepress.com
http://Envato.com

�

Foreword	 7

Notes:	Example	Themes	and	Files	 9

Themes Online 10

Getting	Familiar	with	WordPress	 12

Introduction 13

Getting a WordPress Install 15

Main Concepts 18

HTML, CSS & Basic PHP 21

The WordPress Codex 24

Preparing WordPress for Use Checklist 25

Further Resources for Getting Started with WordPress 30

Blog	Design	 �2

How Blog Design is Evolving 33

Usability 36

Making Room for Advertising 39

Converting Visitors into Readers 41

Tips for Public Theme Design 47

Meet	Creatif	 50

Our Example Set of Designs 51

The Creatif Design Tutorial – Layout in Photoshop 53

The Creatif HTML Tutorial – From PSD to HTML 67

Introduction	to	Themes	 121

Finding and Installing Themes 122

How a Theme Works 124

Template Tags 127

The Loop 129

�

Files and What They Do 132

The WordPress Default Theme – Kubrick 136

Further Resources on Theming Basics 138

Building	a	Basic	Theme:	Creatif	Blog	 1�0

Setting up WordPress 141

Setting up the Theme 142

Absolute URLs 144

Bringing your HTML into WordPress 146

Updating <head> for WordPress 147

Image URLs 152

Dynamic Navigation and Adding Pages 153

Creating a Featured Post with WP_Query 154

Showing the Rest of the Posts 160

Building the Sidebar 163

Widgetizing the Sidebar 172

The Footer 176

Splitting the Page Up 178

Creating the Single Post and Single Page 180

Adding Comments 182

Customizing a Search Results Page 193

The Archives 194

Adding a Custom 404 Page 195

Author Pages and Multiple Authors 197

Wrap up of Creatif Blog 199

Tools	for	Advanced	Theming	 201

Tools for Advanced Theming 202

If Statements and Conditionals 202

Threaded Comments and WordPress 2.7 210

Custom Fields 215

Adding Theme Options 218

Building a Basic Plugin 221

5

Page Templates 228

Repurposing WordPress Functionality 232

Building	an	Advanced	Theme:	Creatif	Portfolio	 2��

Making a Plan 235

Setting up WordPress 237

Defining Constants 241

Showing Both Portfolio and Blog Items 242

Making Multiple Sidebars 250

Updating the Homepage 253

Creating Listing Pages 256

Tying Loose Ends 262

Wrap Up of Creatif Portfolio 263

Building	a	Site	Theme:	Creatif	Site	 265

Making a Plan 266

Setting up WordPress 267

Setting up the Menu 273

Showing Submenus and Page Titles 275

Creating the News Section 280

The Homepage 283

Wrap up of Creatif Site 287

Innovative	Ways	to	Use	WordPress	 290

1. WordPress as a Membership Directory 291

2. WordPress as an E-Commerce Store 291

3. WordPress as a Premium Membership Site 292

4. WordPress as a Social Media Feed Aggregator 293

5. WordPress as a Musician/Band Website 294

6. WordPress as a Design Gallery 295

7. WordPress as a Podcasting Site 295

8. WordPress as a Review Site 296

6

9. WordPress as a Social Network 296

10. WordPress as a Job Board 298

11. WordPress as a Community News Site 298

12. WordPress as a Video Portal 299

13. WordPress as a Mobile Site 300

14. WordPress as a Freebie Aggregator 300

15. WordPress as a Twitter Clone 301

16. WordPress as a Magazine or News Site 301

Even More Ideas on Theming WordPress 302

Afterword	 �0�

Foreword
So often it is the simplest concepts that are the most compelling.
Email is just sending a message, XML is just a way of wrapping
information up and blogging is just regularly updating content.
But what might be simple to explain often has far-reaching and
complex consequences.

In a few short years blogging has gone from geek-speak to
mainstream web, appearing in online media portals, social pages,
corporate sites and of course the thousands upon thousands
of blogs.

To blog however, you need something to blog with. And though
there are scores of options available, it is a handful of platforms that
stand out - Blogger, Typepad, and of course WordPress.

That WordPress excels at blogging is obvious. It’s fast, quick
to learn, exceedingly easy to use and takes next to no time to
install. Moreover it is everything one could hope for in open source
software: well supported, well loved and well used.

But what makes WordPress extra special, so much so that I find
myself writing a book about it, is that above all else WordPress
is customizable.

Of course a lot of software lays claim to being customizable, but
often this amounts to little more than changing some colors and
rudimentary options. With WordPress, extensibility reaches from the
admin system to the front end to the very functionality of
the software.

Like many web users I am pretty handy with a bit of HTML and
CSS, and I even know a little of languages like PHP, but there are
unfortunately plenty of things that are way beyond me to build on

my own. The reason I love WordPress is that using my regular skill-
set I am able to build much, much more than I could before. In this
book Harley and I will show you how you can flex themes, code
hacks and plugins to fit your needs. We’ll take WordPress from
blogging platform to flexible content management system.

I hope that you get as much fun and utility out of WordPress as
both Harley and I have!

Collis Ta’eed

9

Notes:	Example	Themes	
and	Files
Packaged with this book you will find a directory of example files
made available for your reference. These files correspond to the
example designs, HTML and WordPress themes used in the book.
Specifically you will find:

• Photoshop files for the Creatif Design

• HTML/CSS files for the example Creatif build

• Creatif Blog Theme for WordPress

• Creatif Portfolio Theme for WordPress

• Creatif Site Theme for WordPress

• Example plugin from Chapter 6

These files and themes may be used freely in your projects both
commercial and non-commercial. However they may not be
redistributed or resold in any way.

As you work through the book you may choose to either construct
your own set of files from scratch, or to look through the example
files as a guide.

Getting	Started10

Themes	Online

In addition to the example files, you can find the three working
themes setup on working WordPress installations online. These are
made available so that you can see what the working end-result
should / could look like. You will find the themes at:

Creatif Blog http://superpreviewer.com/creatifblog

Creatif Portfolio http://superpreviewer.com/creatifportfolio

Creatif Site http://superpreviewer.com/creatifsite

http://superpreviewer.com/creatifblog
http://superpreviewer.com/creatifportfolio
http://superpreviewer.com/creatifsite

Getting	Familiar	with	
WordPress
In this chapter we’ll skim through the basics of
WordPress, getting an install, how it works, where
you find out more and the technical skills you
need to work with WordPress as a web designer/
developer. If you are already familiar with the
software you can skip ahead to Chapter 2 or read on
for a quick refresher.

Getting	Familiar	with	WordPress1�

Introduction

WordPress is an open source, content management system made
specifically for blogging. That means it is a program that you install,
free of charge, on your server to build a website – usually a blog.

Once installed WordPress has two parts. First the password-
protected admin system where you can put up posts, edit content
and manage the site. And second the public site where people can
view the posts and content.

WordPress is written in the PHP language and has had 2
major version releases to date as well as lots of sub-releases.
At the time of writing we are up to 2.7.x, though this number
updates frequently.

What	Makes	WordPress	Popular

Though initially falling in the shadow of SixApart’s Moveable Type
and Typepad products, WordPress has been steadily gaining in
popularity and is now arguably the most popular blogging platform
for serious bloggers.

This popularity is due to a number of factors, most notably
WordPress’ ease of use and its flexibility and customization.
Installation of the software takes just minutes and a blogger with
very little savvy can get up and running in next to no time.

Once installed, WordPress offers a huge range of customization
options from the default modifications to custom themes
and plugins.

Getting	Familiar	with	WordPress1�

WordPress.com	vs	WordPress.org

One common confusion arises between the two main WordPress
sites, WordPress.com and WordPress.org. To understand the
difference you first need to know about Automattic.

Automattic is the company behind WordPress. Although the
software is open source, Automattic manages the servers, the
distribution and the management of the product. They also operate
WordPress.com which is a hosted version of WordPress.

So if you didn’t have your own server or didn’t know anything about
web development you might sign up there and get an account
which would give you access to your own WordPress blog. The
accounts are very limited in options for customization however, so
we won’t be too concerned with WordPress.com in this book.

Fig 1-1 – The WordPress.com landing page.

http://WordPress.com
http://WordPress.org

Getting	Familiar	with	WordPress15

WordPress.com actually runs a special version of something called
WordPress Multi-User (WPMU) which allows you to operate a
hosted blog platform. Automattic turns a profit by, among other
things, offering upgrades and occasional ads on WordPress.com.

So in other words WordPress.com is a service that runs the
WordPress software.

WordPress.org on the other hand is the home of that software, in the
form of an open source project. This is where you can chat to other
people about WordPress, download the latest install, find plugins
and themes and access the official help and documentation –
also known as the Codex.

In this book we are only interested in WordPress.org and the
software you download and install on your own server.

Getting	a	WordPress	Install

In order to get acquainted with WordPress you will first need a copy
to experiment with. There are three ways you can do this:

Method	1:	Get	an	Account	with	a	Web	Host	with	
Auto-Install	for	WordPress

Because WordPress is so popular, many web hosts have begun
packaging auto-installers with their services. You can find some
well-known web hosts doing this via WordPress.org’s hosting page:
http://wordpress.org/hosting.

Once you have an account with one of these web hosts you
generally log into their control panel and find the list of auto-
installers. Installation is then simply a matter of clicking through a
form or two. If you run into any problems with this method you can
simply contact your web host’s support team.

http://WordPress.org
http://wordpress.org/hosting

Getting	Familiar	with	WordPress16

If you use an auto-installer, it’s a good idea to check the version of
WordPress being used to ensure it’s an up to date edition.

Method	2.	Install	WordPress	Manually	onto	an	
Existing	Web	Host

WordPress can be installed on any web host supporting a
reasonably recent edition of PHP and MySQL. Assuming your web
host doesn’t provide an auto-install facility, you will need to do the
work yourself.

You will need to first download the latest release of WordPress
from: http://wordpress.org/download

You can find full installation instructions for WordPress at:

http://codex.wordpress.org/Installing_WordPress

The installation process is relatively easy, though you will need to
create a database on your server. This can usually be done through
the control panel your web host provides.

Method	�.	Install	MySQL,	PHP	and	WordPress	
on	Your	Local	Computer

Your final option is to create a local WordPress installation on
your computer. This is great for quick testing and development of
themes and plugins.

Depending on your platform (Mac/Win/Linux) there are a
selection of tutorials on how to get setup available at: http://codex.
wordpress.org/Installing_WordPress

http://wordpress.org/download
http://codex.wordpress.org/Installing_WordPress
http://codex.wordpress.org/Installing_WordPress
http://codex.wordpress.org/Installing_WordPress

Getting	Familiar	with	WordPress17

After	Install

Once you have your copy of WordPress installed, log in to the
WP-Admin dashboard and click around to get familiar with the
system. If this is your first time using WordPress we recommend
you try creating a post, updating your profile, logging out, adding
a comment to the post you made, logging back in and then
approving it. Once you’ve done that, try clicking on Appearance >
Themes and change the theme you are using. WordPress comes
with two themes by default and often more if you have used an
auto-installer.

This book will make a lot more sense if you are familiar with the
basic mechanics of how WordPress works. So it’s really worth
spending a couple of hours trying things out.

Fig 1-2 – WordPress’ Appearance page lets you switch themes with just a few clicks.

Getting	Familiar	with	WordPress18

Main	Concepts

WordPress is fundamentally a blogging platform. Although later
in the book we’ll look at how to make WordPress do other things,
initially we’ll just assume that everything you are doing is for the
purposes of creating a blog.

There are a few core concepts in WordPress, they are:

Posts
A Post is a time stamped piece of content. Posts are what a blog
is made of and appear on the homepage in sequential order. They
can also be categorized and tagged, have an author, a date and
comments attached. Posts are the building block of WordPress.
Throughout this book we will capitalize the word Posts when
referring to an actual WordPress Post.

Pages
WordPress Pages are for high level content that is more permanent
and static. Things like about and contact pages are usually made
with a Page. Pages don’t have a timestamp and appear separate
from Posts. Again throughout this book we will capitalize the word
Pages when referring to WordPress Pages.

Comments
Comments are small messages left on a blog by users or the
public. Comments are comprised of a name, email address, URL
and comment message. Comments have an approval system that
by default lets through comments from any registered user and
from anyone who has previously had a comment approved. First
time commenters will have their comments held for approval. You
will need to log in and check through the list to sort the spam from
the legitimate discussion.

Getting	Familiar	with	WordPress19

A very well-known plugin that will make your comment approval life
much easier is Akismet. Akismet is made by Automattic and is a
very good spam filter. WordPress comes installed with Akismet by
default, although you need to get a (free) key from WordPress.com.

WP-Admin
When you install WordPress there is the front-end of the site which
everyone sees and an admin area for managing and updating the
site called WP-Admin, or sometimes referred to as the Dashboard,
or the admin area. If you have a blog at example.com, then the
admin will be at example.com/wp-admin.

Users
A WordPress install can have multiple registered users who each
have different roles. The first user will always be the admin account
having the role of Administrator. Other possible roles are: User,

Fig 1-3 – WordPress’ WP-Admin Dashboard

Getting	Familiar	with	WordPress20

Contributor, Author, Editor, Administrator. Depending on a user’s
role, they will be able to do different things like post, edit, and
approve comments.

Users can be created in WP-Admin or if you make it possible, from
the front end. So for example you could choose to make a blog
such that anyone wishing to comment would need to register. You
might also then hire an author or two and create user accounts for
them set to Author. Finally you might hire a WordPress developer to
fix a bug and give them Administrator access.

Themes
A theme is a package of PHP and CSS files that determines the
front-end design of your WordPress install. When you install
WordPress it uses a default theme. This book will show you how to
make your own themes.

Themes can radically alter how a WordPress install works and are
one of the main tools a WordPress developer uses.

To install a theme you simply place a directory containing the
theme files into the wp-content/themes/ directory of your
WordPress install.

Plugins
Plugins are add-ons or extensions that change or add to
WordPress’ existing functionality. Examples of plugins are: Akismet
which helps you filter spam comments and WP-Cache which
caches your pages to make your install run faster under heavy load.

There are thousands of plugins, almost all available freely on the
web. Along with Themes, Plugins are one of the main tools you will
use to customize WordPress.

Getting	Familiar	with	WordPress21

To install a plugin you upload the relevant files to the wp-content/
plugins directory. If the plugin is packaged in a directory, you simply
place the entire directory in the wp-content/plugins directory.

Linkbacks / Pingbacks / Trackbacks
When another blog links to your site, WordPress will register
a linkback, sometimes referred to as a pingback or trackback.
Generally linkbacks appear mixed in with a Post’s comments.
Linkbacks serve as a way to interconnect sites and continue
conversation from one blog to another.

Blogroll
Along with posts, WordPress lets you post links to other sites
in your Blogroll. A Blogroll is simply a set of categorized links.
Traditionally these links would be to other blogs which is where the
name comes from.

Tags
WordPress Posts can be tagged with keywords to help users find
similar posts. A user will click on a tag and see all posts that have
been tagged with that word. Tagging is a recent addition to the
default categorization that WordPress uses.

HTML,	CSS	&	Basic	PHP

This book is aimed at web designers and developers looking to
make use of WordPress as a flexible content management system.
As such there is some coding knowledge required. In particular
there are three principal types of code we will deal with when using
WordPress: HTML, CSS & PHP.

Getting	Familiar	with	WordPress22

HTML	&	CSS

Because this book deals with the creation of themes and websites
using WordPress you’ll need a very solid understanding of HTML
and CSS. In particular you should be used to coding in a text
editor. It is difficult to use a WYSIWIG editor like Adobe
Dreamweaver on WordPress themes because the pages are broken
up into multiple files.

So if you’re not used to hand coding, it’s a good idea to start doing
so. Try coding some static HTML websites before you start building
WordPress themes. If you’re really unfamiliar with coding websites,
you can find many great HTML and CSS tutorials on the web.

Basic	PHP

WordPress is written in PHP, however you don’t need to know a
great deal simply to work with themes and even plugins. This is
because much of the hard functionality like database access is
handled by WordPress.

Nonetheless when editing a WordPress theme you will need to work
with and around small snippets of PHP code.

If you’ve never used or seen PHP, you should read through an
introductory course and make some basic programs to get familiar
with how it looks and feels. Although you don’t need to know much,
it will make working with PHP tags a lot less stressful and avoid
small unnecessary mistakes like deleting a character or statement
without understanding the consequences.

Getting	Familiar	with	WordPress2�

Fortunately PHP is a simple language and you only need to
understand a basic subset of how it works. Most of what you
do in theme work is to call functions, place variables and very
occasionally work in a loop or if statement.

Some important things you need to know:

1. What PHP tags look like
PHP is code wrapped in either <? … ?> or <?php … ?>.
When the server sees these tags it knows to interpret
all code in between as PHP and execute it on the server
before serving up the page to the end-user’s browser.

2. How If Statements work
PHP, like most programming languages uses special
statements that check whether something is true or

Fig 1-4 – PHP.net is a good source for syntax and help on PHP.

Getting	Familiar	with	WordPress2�

not and depending on the outcome then execute
different pieces of code. The most common variety
of these so-called conditional statements are if/else
statements – http://www.php.net/manual/en/control-
structures.else.php – however you may also run into
switch/case statements – http://php.net/switch.

3. How Loops Work
Another essential piece of the puzzle are loops. A
loop tells the server to execute the same bit of code a
set number of times usually with a changing variable.
Common loop types include for loops – http://www.
php.net/manual/en/control-structures.for.php, while
loops – http://www.php.net/manual/en/control-
structures.while.php, and foreach loops – http://www.
php.net/manual/en/control-structures.foreach.php.

There are many aspects of PHP that you can get by without
knowing including: how to work with databases, how to read files
and advanced topics like object oriented programming.

Naturally the more you know, the easier your life will be. Happily
PHP is quite an intuitive language and you can expect however to
pick up a lot about PHP by working with themes. In this book you
will find a medium level of explanation for the PHP code we use,
so you need not be as familiar with the language as you should be
with HTML and CSS.

The	WordPress	Codex

The WordPress Codex is the documentation and help for
WordPress. It is stored at WordPress.org and is extensive
and helpful.

http://www.php.net/manual/en/control-structures.else.php
http://www.php.net/manual/en/control-structures.else.php
http://php.net/switch
http://www.php.net/manual/en/control-structures.for.php
http://www.php.net/manual/en/control-structures.for.php
http://www.php.net/manual/en/control-structures.while.php
http://www.php.net/manual/en/control-structures.while.php
http://www.php.net/manual/en/control-structures.foreach.php
http://www.php.net/manual/en/control-structures.foreach.php

Getting	Familiar	with	WordPress25

To access the Codex visit http://codex.wordpress.org

You will use the Codex mostly to look up function names and find
out how things work. For example if you were working in a theme
file and you wanted to show who a blog post’s author was, you
might search the Codex for the words ‘Post Author’ and find the
page: http://codex.wordpress.org/Author_Templates which tells you
that to show the author you simply need this piece of code:

<p>Written by: <?php the_author_posts_link(); ?></p>

There are often a few functions to achieve the same results, and the
Codex pages will link to related functions for a specific topic. So for
example when looking up functions for authors, you will see links to
other functions to display author information.

Using the Codex is often a good way to find out things you didn’t
know you could do. For example you might start reading about
author functions and realize that you can link to a bio page for
authors. When you are getting started with theming, it’s worth
making it a habit to always take some time and looking up a few
related pages as an exercise in broadening your knowledge
of WordPress.

Preparing	WordPress	for	Use	
Checklist

After installing WordPress there are several things worth doing to
get WordPress ready to go. These are just options to change in the
WP-Admin system, one or two essential plugins to install and some
other modifications and checks. Here’s a checklist, along with
explanations of what each does:

http://codex.wordpress.org
http://codex.wordpress.org/Author_Templates

Getting	Familiar	with	WordPress26

Activate	Akismet	Spam	Protection

Akismet is a spam filter plugin for comments. It is automatically
installed with WordPress, so you simply need to go to your WP-Admin
Dashboard and click on Plugins, find Akismet in the list and click
Activate. A message will appear asking for your WordPress.com
API key, simply click the link and create a WordPress.com account
and then copy and paste the key back into your Dashboard.

Install	WP-Cache	Plugin

When a page is accessed on your site, WordPress performs some
database lookups and executes a bunch of code. Ordinarily this
isn’t a problem, however if you happen to have a lot of traffic all at
once, this can slow your site right down. WP-Cache is a plugin that
caches your pages periodically to dramatically reduce the load on
the WordPress server. You can find the plugin at http://wordpress.
org/extend/plugins/wp-cache/

Once installed, click on Plugins in the Dashboard and click Activate.
You then need to click on Options in the dashboard menu and
find WP-Cache in the menu. This leads you to a page where you
can enable the caching. Don’t enable just yet, because it’s best to
do this after you install your theme and have everything working,
otherwise you can sometimes have trouble testing changes.

Note that to get WP-Cache working you may need to create some
directories for it to write to. The plugin will give you details of
what to do.

http://wordpress.org/extend/plugins/wp-cache/
http://wordpress.org/extend/plugins/wp-cache/

Getting	Familiar	with	WordPress27

Set	Permalinks

Every post you create has a permanent web address that
WordPress creates called a permalink. You can select how
WordPress should structure your Permalinks by clicking on Settings
in the dashboard menu and then clicking on Permalinks.

There are five options to choose from:

1. Default – The default URL structure is a mix of odd
characters and ID numbers

2. Day and Name – Suitable for news and time
centric blogs

3. Month and Name – Suitable for news and time
centric blogs

4. Numeric – An incrementing number rather than the
post’s actual title.

5. Custom – By specifying a variable in %% signs you
can choose the structure

A good format to use is to click on Custom and write:

/%category%/%postname%/

This will create links that have the category of the post and title of
the post in the URL. These links will not only be more readable and
memorable, but are also better for search engines.

WordPress uses a file called .htaccess to create the permalinks,
if this is not writable by the server, WordPress will give you
instructions on creating the file yourself.

Getting	Familiar	with	WordPress28

Update	Your	Profile

Click on Users > My Profile in the WP-Admin menu and take a
moment to fill out your profile. You may wish to untick ‘Use Visual
Editor When Writing’ if you prefer to write in HTML as the Visual
Editor has been know to mess with code, though more recent
versions of WordPress are getting better in this department. This is
just a preference however.

After you click Update, go back and find the select box which reads
“Display Name as” and select a new option other than ‘admin’.

Make	Sure	File	Uploads	are	Working

One of the neatest things about using WordPress is that when you
are creating a Post you can upload files directly in WordPress and
not need to ever touch your FTP program. This is great if you have
multiple writers or non-tech writers, however you may need to
double check that uploads are working on your server.

In WP-Admin, click on Posts > Add New to bring up the Add
New Post screen then click the image icon to add assets using
WordPress’ Uploader. Enter a file and try uploading. If all goes to
plan the file will appear there successfully. If not, you will most
likely need to create a directory for the upload facility to upload to,
or set permissions for the directory to be writable. You can do this
through your FTP program, the error message will tell you what
folders to create.

Options for the uploads are controlled via Settings > Miscellaneous
in the Dashboard.

Getting	Familiar	with	WordPress29

Install	Sitemap	Plugin

The Sitemap plugin automatically creates an XML sitemap prepared
to Google’s specification and then contacts the Google servers
every time you create a new post or change the sitemap. You can
download the plugin from http://tinyurl.com/2bbwmg.

Clear	WordPress	and	Create	Categories	

WordPress comes with a lot of default content in the form of a
sample Post, a comment, categories and a blogroll. Although these
can be quite good for testing, generally speaking you will want to
go through, delete them all and then create your own content. This
is particularly true in the later chapters of this book where we will
need to match content with our themes.

Fig 1-5 – The WordPress Codex, a definite bookmark in any theme developers favorites.

http://tinyurl.com/2bbwmg

Getting	Familiar	with	WordPress�0

Further	Resources	for	Getting	
Started	with	WordPress

You can find resources on FTP, installation, and blogging with
WordPress at:

Changing Permissions:
http://codex.wordpress.org/Changing_File_Permissions

FTP:
Transmit (Mac) http://www.panic.com/transmit/
SmartFTP (Win) http://www.smartftp.com/
FileZilla (Cross Platform) http://filezilla-project.org/

Basic WordPress Lessons:
http://codex.wordpress.org/WordPress_Lessons

Absolute Blogging Basics:
http://www.problogger.net/archives/2005/02/05/what-is-a-blog/
http://www.problogger.net/archives/2006/02/14/blogging-for-
beginners-2/

http://codex.wordpress.org/Changing_File_Permissions
http://www.panic.com/transmit/
http://www.smartftp.com
http://filezilla-project.org
http://codex.wordpress.org/WordPress_Lessons
http://www.problogger.net/archives/2005/02/05/what-is-a-blog/
http://www.problogger.net/archives/2006/02/14/blogging-for-beginners-2/
http://www.problogger.net/archives/2006/02/14/blogging-for-beginners-2/

Blog	Design
Designing a blog, like designing any other website,
is all about the site’s users. What do they want
to do? And what do you want them to do? In this
chapter we’ll look at some of the important issues
in designing blogs, what trends have emerged and
how you can design for usability.

Blog	Design��

How	Blog	Design	is	Evolving

Blogging is a fast changing medium. The way internet users view
blogs today is vastly different to how it was just two or three years
ago. What began as almost simple journals have in some instances
expanded into magazines, portals and communities. Even sites
that hold no larger aspirations have had to cope with new features,
widgets and technologies.

Conventions on how to design a simple blog are strong. Most users
have a firm idea of what a blog should look like, with sidebars, a
posting column, a footer and navigation/header. As in any form
of design, these conventions can be broken, but it’s important to
understand why they are there and why they work well.

The biggest challenge currently in blog design is that as blogs
evolve into new formats, add new content types, expand from
single author to editorial team, and fundamentally grow, the designs
that house them also need to change.

There are three trends in blogging that have interesting and
important implications for blog design:

Blogs	as	Communities

Blogs increasingly serve as spaces for niche (and sometimes
mainstream) communities. These communities naturally grow
around a shared interest and capitalize on one of the key features
of a blog – reader commentary.

Since bloggers, like almost any website owner, are primarily
concerned with keeping users around, increasing pageviews and
building loyalty, it is a natural progression to include additional
community features.

Blog	Design��

These features include user profiles, ratings, social network tie-ins,
galleries and an increasing number of external widgets. To date
WordPress hasn’t hugely grown its off-the-shelf featureset in this
department, at least not for the standalone version of WordPress,
however competing provider Six Apart – makers of Typepad and
Moveable Type – have. No doubt WordPress won’t be far behind.

Some larger blogs have gone the route of building custom
platforms, most notably the tech blog Mashable – http://mashable.
com – which provides a small social network to its users.

For WordPress users today, there are a huge range of plugins to
extend the core functionality and in Chapter 9 we’ll showcase
some of them with explanations on how they can build community
features into a WordPress blog.

Blogs	as	Magazines

While a single, hobby blogger may only produce one or two posts
a day. Increasingly professional blogging outfits are building sites
that publish up to 20 posts a day. When presenting that much
information on a daily basis, showing it in a single downward
column may not be the best solution.

The recent trend to ‘magazine’ style blog themes shows that
bloggers are looking for designs that improve access to their
content, emulating traditional media in format and style. These
designs often have feature posts and sub posts, present a greater
number of short snippets and use different layout and positioning
to engage the reader.

http://mashable.com
http://mashable.com

Blog	Design�5

Blogs	as	Portals

Another trend we are seeing in blogs is to grow from housing just
a blog to adding job boards, forums, link directories, classifieds
and other types of content. In many cases, these efforts come from
bloggers looking to increase their revenue by building in revenue
streams that fit in with their blog.

Design	Implications

The implications of all three trends – blog communities, magazines
and portals – is similar. Namely to find ways to fit in more
information in a way that doesn’t overload the user, stays easy to
navigate and understand, and looks good doing it!

Fig 2-1 – FreelanceSwitch is a blog that has added forums, a job board and a variety of additional
elements to its basic WordPress format.

Blog	Design�6

The best way to keep up with trends in how blog design is
changing is to look at what other blog designers are doing. A useful
practice for blog designers it to spend time researching how other
designers approach typical blog information design.

You can find lots of great blog designs at these sites:

BestWebGallery – http://bestwebgallery.com
A gallery of mostly non-flash design that includes a large number
of blogs.

WebCreme – http://webcreme.com
Similar to BestWebGallery, WebCreme is another great source of
blog designs.

SmashingMagazine – http://smashingmagazine.com
Smashing is a blog itself, and although about web design in
general, devotes a large number of posts to rounding up great blog
designs and great Wordpress themes.

Usability

Usability is about designing a website that lets its users do what
they want to do in the most logical and intuitive manner. Navigation,
for example, is an important part of usability, because your readers
shouldn’t be confused about where they are or how to get where
they want to go. If they can’t figure these out easily, chances are
the experience will negatively impact their opinion of the site.

There are many topics, like navigation, which apply to
blogging in much the same way as they do to other types of web
design. You can learn about general web usability at AListApart –
http://alistapart.com – one of the largest and most successful
blogs around.

http://bestwebgallery.com
http://webcreme.com
http://smashingmagazine.com
http://alistapart.com

Blog	Design�7

Here are three usability issues that are particularly important for
blog design:

Understanding	and	Following	(Blog)		
Conventions

Over time blog designers have established a number of conventions
that users have grown accustomed to. A straightforward example is
that when you are on a blog homepage and you click on a post title,
you expect to be taken to the post’s page where you will see the
post in full, complete with comments and trackbacks.

It is important to know and follow these conventions. You can of
course break some, however if you go against the grain everywhere
you risk confusing users.

If you are reading this book and building Wordpress themes,
chances are you are already familiar with many blog conventions,
however it might be worth exploring some blogs with this topic
specifically in mind. Think about where items are placed – for
example social media icons tend to always appear at the bottom of
a post so the user can click them after reading the post. Also take
note of when something isn’t in the place you expected it to be. It’s
natural that many blog designers get things wrong, and this can
teach as much about what to do as what not.

Think	Like	a	User

The cornerstone of usability design is to think like a user. Approach
your blog design as if you are a reader rather than a designer and
ask yourself questions like, what are you trying to accomplish on
the site? What information is important to you? What information
is irrelevant?

Blog	Design�8

As an example, in many Wordpress themes there is a block of
information called “Meta Information”. This shows links to the
admin area, whether the page is valid xHTML and so on. In other
words, information that isn’t important or even necessary for
anyone except possibly the owner of the site. If you wanted to have
it on the page then, it should be off somewhere discreet, instead of
cluttering up an already busy sidebar.

When you design blogs, try to come at it as a user of the site and
design so that common user tasks like searching archives, reading
content and placing comments are easy to accomplish.

Consider how your design gives focus to different elements on a
page. What are the first things the user’s eye sees? Where do they
instinctively click? If possible watch what typical readers (including
yourself) do when visiting a blog.

Fig 2-2 – PSDTUTS is a large blog that is a good example of dealing with the huge amount of clutter
that blogs accumulate.

Blog	Design�9

Order	and	Clutter

One particular affliction that most blogs suffer is the overwhelming
number of elements on a single page. In a typical sidebar you will
have categories, a search box, archives, adverts, links, banners,
and possibly even navigation. The content area, besides having
the blog post itself, will often include numerous links, social media
icons, headings, comments, trackbacks and so on.

Most blogs are cluttered with information as is, when you add in the
three trends outlined earlier, the overall effect can be overwhelming.
As a blog designer your challenge is to make order out of it all. A
user should be able to find everything they expect and want, but
not feel overwhelmed or confused.

The best way to achieve order is to expect and plan ahead for
the many elements that will appear on the page. Use size, color,
position and other design tools you have at your disposal to make
them fit together into a coherent page for the user.

Planning ahead to provide space for bloggers to add widgets,
adverts and other extras to your blog can ensure your theme
continues to look good, even after it leaves your hands.

Making	Room	for	Advertising

Many blogs today run advertising. The more successful the blog,
the more likely this will be the case. As a web designer, advertising
presents a challenge because it creates a space that is beyond
your control. Below are some tips for designing a blog that is going
to run advertising.

Blog	Design�0

Plan	for	Advertising

It’s tempting to design your page and then think about how to
fit adverts in later, but this only makes the problem worse. If you
realize advertising is going to be run on the blog, then design
spaces to fit.

What you want to avoid is adverts that look like they were just
placed in whatever empty space the blogger could find. As a
designer your job is to make the advert look like it’s meant to
be there.

Place	Ads	in	Your	Mockups

When you are designing up your page, avoid simply leaving blank
spaces where ads will be placed. Instead find actual adverts and
mock them into your designs. Empty spaces are deceptive and will
usually look better than actual advertising. Advertising often has a
lot of visual noise and usually needs space around it to balance it
out. You won’t realize this or make space to accommodate unless
you actually place real ads in your design. Moreover, it’s often best
to plan for the worst case scenario – somehow that’s often the one
that eventuates!

Blend	In,	Stand	Out

Advertising works best when it stands out because it catches the
user’s attention. Unfortunately it often looks the worst
when standing out the most. Your aim should be to design in
advertising that blends in with the interface whilst at the same
time standing out.

To accomplish this, aim to make the advertising spaces a part of
the interface. For example if your design was made up of a series

Blog	Design�1

of boxes, advertising would make most sense if it had its own box
rather than just appearing in an empty space.

Avoid the temptation to move ads off to areas of the page that
users won’t see, like the footer. When working with text adverts,
avoid coloring them so that they blend in completely, but do
choose a palette that compliments the rest of the page.

Use	Standard	Ad	Sizes

As a web designer it’s tempting to use ad sizes that match your
design – adding them in after the initial layout is done. If a column
happens to be 178px wide, then the advert should be 178px
right? This might make life easier when designing, but is harder
for the blogger and ad buyer to manage. Learn standard Internet
Advertising Bureau (IAB) ad sizes and work your designs to fit
them, not the other way around.

Converting	Visitors	into	Readers

A blog has one underlying aim: to capture as large an audience as
possible. To do this you must not only create traffic, but additionally
convert that traffic into regular readers. It is this second task that a
blog designer should pay attention to.

To turn a casual visitor into a regular reader, a blog needs to engage
the visitor as much as possible. To a large extent this is a function
of the blog’s content, however a good website design can make
this task much simpler. Below are some ideas to consider.

Focus	on	Content

As a designer it can be tempting to add a lot of visual noise to a
page in the form of graphics and interface. However it’s vital that

Blog	Design�2

a blog’s design be focused on the content of the blog, not the
form. This is particularly true for visitors arriving from services
like StumbleUpon and Digg, where the reader often gives the site
only a cursory glance before moving on. It is therefore important
to get straight to the heart of things, with content, big headings,
perhaps a bold image and not too much else. If the page looks too
distracting, chances are the visitor will move on, after all something
more compelling is usually only a click away.

Giving	the	Reader	Somewhere	to	Go

The natural time for a user to leave a site is once they’ve finished
what they were doing there. So if a user is reading a blog post, the
natural time for them to leave the site is when they get to the end of
the post.

It is therefore important to ensure the user has somewhere to
go which keeps them on the site. There are many ways to do
this including:

• Related Posts
At the end of blog posts, give the user links to
related posts either using a Wordpress plugin (http://
wordpress.org/extend/plugins/wordpress-23-related-
posts-plugin/) or by running a query to show other
posts in the same category or other posts by the
same author.

• Archive and Category Links
At the end of blog posts, give the user links to search
the archives or browse the post’s category.

• Popular Posts
Popular posts are popular for a reason and are a great
way to engage new readers and show them why the
site is worth bookmarking. Providing easy links to these

http://wordpress.org/extend/plugins/wordpress-23-related-posts-plugin/
http://wordpress.org/extend/plugins/wordpress-23-related-posts-plugin/
http://wordpress.org/extend/plugins/wordpress-23-related-posts-plugin/

Blog	Design��

is a good way to direct the user to the best the site
has to offer.

Make	Browsing	Archives	Easy

As a blog gets older and larger, much of its content gets hidden
away. Often there is content tucked away in the archives that would
be of great interest to a new, casual visitor. Standard blogs will
generally have a list of category or date based archives, however as
a blog designer you can go further and look at additional means for
users to browse older posts:

• Popular Posts
The more popular a post is, the more likely a new
visitor will enjoy it. The design of a blog can help users
find a blog’s popular posts through a simple sidebar
element that is either hand picked by the blog author,
or automated using a formula like most comments =
most popular.

Recently blogs have begun using Javascript to create
changeable menus of post links. The user is able to
view for example popular posts of all time, recently
popular, the editor’s picks or recently commented
posts. When they select a new option, the list of posts
shown changes using Javascript.

• Random Posts
Using a freely available Wordpress plugin (http://
wordpress.org/extend/plugins/random-posts-plugin/)
a blog design can show a list of random posts to the
user. This can be useful for not just casual, first time
visitors but even for regular readers as it is a powerful
way to help them explore parts of a blog they may not
have seen before.

http://wordpress.org/extend/plugins/random-posts-plugin/
http://wordpress.org/extend/plugins/random-posts-plugin/

Blog	Design��

• Sneeze Pages
A sneeze page is an author edited list of links organized
up according to blog topics. The idea is that from a
sneeze page, your readers can be sent off to different
parts of a blog, according to their interest.

As a blog designer, you might create a sidebar area
titled “Explore the Blog” with a list of main topics.
Each topic would then link off to a page with a brief
introduction to that topic and a list of post links to
relevant articles.

• Browsable Archives
Almost every blog has some sort of archive, however
blog designers often don’t pay that much attention to
these pages. Archives are however amongst the most
important pages on a site and should be well thought
out. A good blog archive should have at the very least a
hierarchical listing of posts according to date, category
or author, a sitemap of non-post pages and a search
form in case the user can’t find what they need.

Help	the	User	Subscribe

The mainstay of blog readership are subscribers. A blog should
be designed in such a way as to encourage readers to become
subscribers easily. There are many ways a design can do this:

• Email Subscriptions
Although traditionally subscriptions are through RSS,
thanks to services like Feedburner (http://feedburner.
com) offering a choice of RSS or email subscription is
simple. This should be an obvious first step in ensuring
subscription is easy.

http://feedburner.com
http://feedburner.com

Blog	Design�5

• Help with RSS
Not everyone knows what RSS is, particularly on non-
tech blogs. So it makes sense to have a link or page
explaining what RSS is and how you can subscribe
to a blog.

• Ask Them to Subscribe!
The best time to ask a reader to subscribe is at the end
of a post. It’s easy to add a button or sentence asking a
user to subscribe in a panel at the end of a post.

• Utilize Current Subscriber Numbers
For larger blogs, the social proof of having current
subscriber numbers can provide a “It must be good!”
kind of effect. Feedburner provides a simple daily
updating image that shows the subscriber count,
however it’s possible to use a WordPress plugin for
even more customization (http://tinyurl.com/customrss)

Fig 2-3 – The comment form on Creattica Daily.

http://tinyurl.com/customrss

Blog	Design�6

Engage	the	Reader	in	Discussion

Most blogs include comments, and a great way to turn a casual
visitor into a regular visitor is to engage them in the discussion
that takes place in those comments. Some of the ways that a blog
design can help get a reader involved include:

• Make It Easy to Comment
Commenting should be as easy as possible. When a
post finishes, you want as little noise between the post
and comments as possible. Headings and comment
instructions should be clear and large so the user
knows where to go and what to do.

In most instances it is a good idea to avoid making
membership a requirement for commenting – though
generally this decision is out of the hands of the
blog designer.

• Show Recent Comments
Showing recent comments on a blog’s homepage or
sidebar is a good way to get casual visitors involved
in a discussion they might not have seen. It also gives
the user more incentive to comment as there is more
emphasis on discussion on the blog.

• Include Comment Subscriptions
Wordpress makes it easy to provide RSS feeds
for comment threads and this feature will keep
commenters hooked to a blog far more tightly than
if they rely on remembering which posts they wanted
to check the discussion on. A plugin is also available
to allow users email updates on a discussion (http://
wordpress.org/extend/plugins/subscribe-
to-comments/)

http://wordpress.org/extend/plugins/subscribe-to-comments/
http://wordpress.org/extend/plugins/subscribe-to-comments/
http://wordpress.org/extend/plugins/subscribe-to-comments/

Blog	Design�7

• Use Gravatars
Gravatar is a simple, lightweight system to provide
user’s with images or avatars to appear next to their
comments. Since WordPress 2.5, Gravatars have
become native to WordPress and it’s a good idea to
make use of them. They help make a discussion more
personable by giving a face to people’s comments
helping draw in users to chat on a blog.

Tips	for	Public	Theme	Design

Most blog design is done for custom sites, however some blog
designers create WordPress themes for public release. When you
design a theme for public release, there are several extra issues
to consider.

• Use text wherever possible
When designing a custom blog design it’s possible
to use graphics for things like sidebar headings or
logos. However doing this in a public theme means the
bloggers using the theme won’t be able to customize
those parts. Therefore unless it’s absolutely essential
you should avoid using graphics and stick to plain
HTML text or for a more advanced look, Flash and
sIFR – http://en.wikipedia.org/wiki/Scalable_Inman_
Flash_Replacement. You may not be able to get quite
the look you wanted, but working within the constraints
can still get a good result.

• Make the design as flexible as possible
People using your theme will inevitably try to do things
you never thought of. This means you need to keep a
theme as flexible as possible. For example if you rely
on a sidebar being a certain height in order not to break
the page’s structure you are heading for trouble. Users

http://en.wikipedia.org/wiki/Scalable_Inman_Flash_Replacement
http://en.wikipedia.org/wiki/Scalable_Inman_Flash_Replacement

Blog	Design�8

will undoubtedly try to fit extra things in, or have text
and links that are odd sizes. Try to make a design
that is hard to break, where overflow content just
moves down the page and doesn’t throw things out
of alignment.

• Design the WHOLE theme
In a custom blog design you can get away with only
designing the parts you are going to use. For example
if you don’t want archives, your archives page doesn’t
need to be designed (or even exist), however in public
theming, some users of your theme will have different
requirements. So it’s important to design every page
and make sure the theme is complete.

Meet	Creatif
The best way to learn about theming WordPress is
to have an example to follow along. In this chapter
we’ll look at the example set of designs we’re going
to be working with, run through a design tutorial on
putting them together in Adobe Photoshop and then
a second tutorial on taking the Photoshop PSD files
and building a set of HTML mockups.

Meet	Creatif51

Our	Example	Set	of	Designs

The example set of themes we’re going to be using in this book
are called Creatif. The designs were done specifically to suit the
purposes of this book and include three homepages, a post page,
a portfolio page and a general page, as well as an alternate color
scheme. Here’s what they all look like:

Meet	Creatif52

Meet	Creatif5�

Provided below are two tutorials on building the photoshop layout
and HTML/CSS for Creatif. Most of the styles and pages we need
to build our themes are covered in these, however you should use
the final files provided with this book when building Creatif. A few
extra styles not mentioned below, are added in the CSS that are
needed in the WordPress development.

The	Creatif	Design	Tutorial	–	Layout	in	Photoshop

We’re going to begin building the Creatif themes by putting
together a design in Adobe Photoshop. You can begin from
scratch by creating a new canvas in Photoshop, sized at around
1300px wide x 1400px high. Alternatively you will find completed
Photoshop PSD files in the files that came with this book.

Colour Palette

A good place to begin a design is by selecting an appropriate colour
palette. Sites like COLOURlovers (http://colourlovers.com) and

http://colourlovers.com

Meet	Creatif5�

Adobe’s Kuler (http://kuler.adobe.com) are great for choosing
a nice set but often you can just come up with your own by
experimenting. A simple formula that works sometimes is to
choose a set of neutral shades and a single highlight colour to lift
the palette. In this instance we’re going to use a beigy-grey colour
palette with a really bright light blue as the highlight colour.

Step 1

We begin the tutorial with a little logo. While logo design is generally
a complex process, in this instance we just want a little graphic to
anchor the page.

Here we’ve used the font News Gothic Condensed Bold. We’ll add
a simple Layer Style (settings for which can be found in the next
step) to give the text a bit of kick. It uses a faint gradient, subtle
shadow and a 1px border to lift the type off the page.

http://kuler.adobe.com

Meet	Creatif55

Step 2

Here are the settings for the Layer Style:

Meet	Creatif56

Step 3

Next we add a rounded rectangle behind the text. You can create
this with the Rounded Rectangle Tool (U). As you can see in the
image below I have added a faint gradient to the box as well. You
can do this by CTRL-clicking the box layer to select its pixels, going
to Select > Modify > Contract and contracting by 1px and then in
a new layer drawing a Radial Gradient from a lighter version of the
dark colour and fading to transparency.

Meet	Creatif57

Step 4

The canvas we’re using is 1300px wide x 1400px high. In reality all
the content is within 1000px so that it will be viewable on a 1024 x
768 screen. It’s a good idea to have a wider canvas so we can plan
for what happens when the viewer has a larger resolution.

In the image below, we’ve added the basics of the header, namely a
dark bar along the top, a darker shade of the background colour as
my menu bar, a 1px line to seal off the menu bar, and some subtext
under the logo (in News Gothic Condensed again).

There are two things to note:

1. It’s always nice to use shades of your colour palette in
your design. Here we have beige as our background
colour, then the menu bar, the menu items and the logo
subtext are all varying, darker shades of that colour.
This gives a nice, smooth, non clashing feel. Of course
if you only use shades it gets pretty boring, that’s why
we introduce our highlight colour a little later. Different
design styles will call for more variation in colour, but
in our case we want mostly matching hues and shades
with one strong highlight.

2. Additionally it’s nice to reflect your colour across your
design. So here we have the beige background colour
and then our darker colour appears in three spots –
the logo, the top bar and the highlighted menu link.
This creates a visual balance and alignment between
the three elements. Balance is important in creating a
pleasing aesthetic.

Meet	Creatif58

Step 5

Here we add the first bit of our highlight colour. It’s a really subtle
1px line along the top. Later as we add more elements the
highlight colour will appear again in different spots, and will pull
those elements together to unify them into a single, slick looking
design. Because there’s not much to this design except well placed
elements and colour, it’s very important to get the colouring right.

Meet	Creatif59

Step 6

Now the page is looking a bit flat, so here we have added a layer
just above the background layer. In that layer we have a Radial
Gradient going from the dark beige/grey colour to transparency,
with a layer blending mode set to Colour Dodge to lighten the
background. Because the menu bar is in fact drawn in with
transparency the lightening effect shows through the menu bar too.

It’s vital to remember though that you need to build this design into
HTML later. For that reason you’ll notice that by the time you get
to the edges of the 1000px viewable area we’re back to monotone
colours. This means later on we’ll be able to create a single image
slice and use it as a CSS background image. Then we’ll have
another background image with the big highlight area and this will
be a background image in the main content body.

It’s important to know about building sites so that you can design
them in such a way as to avoid complications later down the track.
This mostly comes from experience and learning what design
decisions can make life troublesome during the build. Here things
will be much easier if we have an easily repeatable background
outside the 1000px viewable area.

Meet	Creatif60

Step 7

Next it’s time to start adding the first white content block area. Here
we have used a 1px outline of a darker version of the background
colour, then a 1px interior border and finally a faint beige gradient
going downwards. This style matches our logo. Additionally by
having the darker outline, followed by lighter interior outline we get
a very sharp look to the page. Visual sharpness or clarity comes
from contrast – e.g the dark to light between the two lines.

Clarity is important in web design and is a key difference between
traditional print work and on-screen graphics. So it’s important to
pay attention to detail and keep elements on the page looking clear
and crisp.

Meet	Creatif61

Step 8

Now I add some mock content in here. Because this text has to
be HTML text it’s important to choose your fonts carefully. There’s
nothing more depressing than choosing some nice fonts and
then remembering later on that they aren’t default fonts and so
consequently your design is going to look totally different to how
you had previously imagined. Here we’ve used Helvetica for the
bold headline and Arial for the text.

In Photoshop it’s a good idea to set the Anti-Aliasing to “Sharp”
to mimick how the text will look in the browser. In the old days we
would have used “None”, but these days most PCs and all Macs
use that ClearType algorithms to smooth fonts.

Note that the subtext links use our highlight blue, picking up on the
1px headling line we added earlier.

Meet	Creatif62

Step 9

Next we will add a small, but eye-catching design element in the
form of a message strip along the top right corner of the boxes. In
a simple design like this (where it’s mostly simple lines and boxes),
it is a good idea to have one or two elements in the design that
really leap out. In this case we’re going to use our sharp blue colour
combined with a 45’ angle to make a great highlight for our design.

So we draw a rectangle and add some text over the top. Then use
the Dodge Tool (O) to lighten the middle part, and add a Layer Style
to give the text a bit of shadow. Then select both layers together,
hit CTRL-T to transform and rotate 45’.

Step 10

After placing the strip over our box, we cut away the edges as
shown. Now you’ll notice we could have placed it so it was aligned
with the box, but to add extra visual interest we’re going to make it
look like this strip is wrapping around the box, so instead we move
it about 4px off the box to the right and top.

Meet	Creatif6�

Step 11

Next we manually select the pixels
in the pattern you see below,
create a layer below the message
strip layer and draw in a darker
blue colour. It’s darker so it looks
like the back of the message strip,
and you’ll notice that it is darker
towards the right where the pixels
are in a sort of mock shadow cast
by the main strip.

Step 12

We then duplicate the wrap
element, rotate it 90 degrees and
place it on the right hand side of
the box as well, as shown. And
voila, we have our design element!

Meet	Creatif6�

Step 13

Next we’ll create some more elements. There’s not much new here.
We are basically reusing the same design elements – the same text
style, the same message strip, the same boxes – carefully arranged
as shown.

Step 14

Next we’ll add a footer area. Again we’ll make use of the same
colours as used in the top bar to reflect them yet again and in this
case seal off the design.

Meet	Creatif65

Step 15

Now because we’ll be creating a WordPress theme it’s not a bad
idea to create a version of the logo that could be created with plain
text. You can see it below.

Meet	Creatif66

Step 16

At this point let’s take a quick look
at the Layers Palette so far. As you
can see, we’re taking advantage
of grouping layers into sets. Here
the design for the logo vs text
logo, the blog vs portfolio and the
internal page are all in the same
PSD file, just in different layer sets.
So we can switch them on and off
and get different arrangements.
This is useful because if we
suddenly decide to move the logo
2px to the left, it’s not necessary
to open up three files and move
it 2px in each or risk having
discrepancies. Additionally it’s just
nice and ordered and will have
you feeling all warm and fuzzy just
looking at it!

Step 17

Finally, we’ll put together a second alternate vesion of the design
using a dark brown background. Although it looks quite different,
there isn’t actually much that needs to change, we simply darken
the logo to black so it stands out still and adjust a few other colours
to make the design all make sense.

Meet	Creatif67

The	Creatif	HTML	Tutorial	–	From	PSD	to	HTML

Now that we have a complete set of designs in Photoshop, it’s time
to transform our mockups into a fully functioning HTML site. Then
in the following chapters we’ll add WordPress functionality to the
HTML to create our final themes.

Meet	Creatif68

Again you can grab the finished HTML from the files that came with
this book, or alternately follow along. We’re going to approach the
build in stages. First we’ll do the framework, then the first page,
then alternate pages, then finally an alternate colour scheme.

Step 1 – Getting Ready

So first of all we boot up our code editor of choice. Additionally
it’s good to set up a directory structure that includes an /images/
directory and a /scripts/ directory.

Step 2 – Quick Early Layout

The first thing we’ll do is a quick overall layout in HTML with some
barebones CSS just to make sure we’ve got a solid foundation. We
can also check it in the major browsers (IE7, IE6, Firefox, Safari)
just to make sure we’re on a solid footing. There is nothing worse

Meet	Creatif69

than coming back all the way to the beginning to fix browser
compatibility issues. It’s much better to do it as you go.

So we’re building the first mockup, we can see a few things:

1. The design is centred. That immediately tells us
we have to wrap it in a container and then centre
that container.

2. Essentially the design is a series of horizontal blocks.
Sometimes the blocks have two columns, sometimes
one. So we can do it as a series of <div>’s. This is
good because we can then mix and match elements
into different pages as you’ll see later.

3. We have a footer which is a different colour. This means
the background needs to be that colour, in case the
users browser stretches. So the footer will need to sit in
a different container to the main stuff.

So here’s a HTML layout:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

 <meta http-equiv=”Content-Type” content=”text/html;

 charset=UTF-8” />

 <title>Creatif</title>

 <link href=”style.css” rel=”stylesheet” type=”text/css” />

</head>

<body>

 <div id=”main”>

 <div class=”container”>

 <div id=”header”>

 Logo / Menu

 </div>

Meet	Creatif70
 <div id=”block_feature”>

 Featured Content

 </div>

 <div id=”block_content”>

 Content

 </div>

 </div>

 </div>

 <div id=”footer”>

 <div class=”container”>

 Footer Stuff Goes in Here

 </div>

 </div>

</body>

</html>

As you can see there are two segments: the #main area and the
#footer area. Inside each we have a <div class=”container”>
element which will be fixed width and centred. Then inside the main
container we just have a sequence of <div>’s. Now let’s add a little
CSS as follows:

body {

 margin:0px; padding:0px;

 background-color:#131211;

}

#main {

 background-color:#c4c0be;

}

#footer {

 color:white;

}

.container {

 width:950px;

 margin:0 auto;

 border:1px solid red;

}

Meet	Creatif71

So we’re setting the body’s background colour to the dark brown of
the footer. Then the #main area has the lighter background. Finally
you can see the .container elements have a width of 950px and
are centred using margin: auto. We’ve also added a red border
just so you can see where the elements are on the page.

Step 3 – Add Some Background Images

So our layout is looking ship shape. With the main elements
positioned, it’s just a matter of going through and styling it all up.
The first thing we need are some images. You can make these
yourself or just grab them from the demo files.

Here’s a screenshot of Photoshop, saving the first image – a large
background JPG. This large background image will be used to get
that radial gradient highlight, then we’ll use a thin 1px slice to fill
out the left and right sides so it extends off.

Meet	Creatif72

Similarly we’ll create a background image for the footer to tile
along as a border between it and the main area (you can find that
image in the ZIP file, it’s called background_footer.jpg). Now we’ll
update the CSS file to remove that red border and add our new
background images, as follows:

@charset “UTF-8”;

/* Background-Styles */

body {

 margin:0px; padding:0px;

 background-color:#131211;

}

#main {

 background:#c4c0be url(images/background_light_slice.

 jpg) repeat-x;

}

#main .container {

 background-image:url(images/background_light.jpg);

 background-repeat:no-repeat;

 min-height:400px;

}

#footer {

 background-image:url(images/background_footer.jpg);

 background-repeat:repeat-x;

 color:white;

 padding:40px;

}

.container {

 width:950px;

 margin:0 auto;

 position:relative;

}

Meet	Creatif7�

Two things to note:

1. There are multiple ways to set a background. In
#main we’ve used a single selector which sets three
properties – colour, image, image repeat. But you can
also set each property individually as we have done in
#main .container and #footer.

2. Notice that because we want to apply the
“background_light.jpg” image to the
<div class=’container’> which is inside #main, but
not to the one that is inside #footer, we’ve written
#main .container. In other words, we apply it only to
elements with the class=’container’ that are inside
elements with id=’main’.

Step 4 – Testing in Browsers

So far so good. Don’t forget to test in different browsers. Here you
can see in IE7 it’s looking fine!

Meet	Creatif7�

Step 5 – Making a Transparent Logo

Next we’ve created the logo element. Because later on we’ll
be running an alternate colour scheme we’re going to use a
transparent background PNG file. You can make these by switching
off the background in Photoshop and then going to File > Save for
Web and Devices and selecting PNG-24. You should be aware that
PNG-24 produces pretty high file sizes. It’s OK for a small image
like this, but for larger ones they can get quite big.

Now we’ll add our logo and also a menu with this HTML:

<!DOCTYPE html PUBLIC ”-//W3C//DTD XHTML 1.0 Strict//EN”

”http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

Meet	Creatif75
 <meta http-equiv=”Content-Type” content=”text/html;

 charset=UTF-8” />

 <title>Creatif</title>

 <link href=”step_2.css” rel=”stylesheet” type=”text/

 css” />

 <link rel=”shortcut icon” href=”images/favicon.ico” />

</head>

<body>

 <div id=”main”>

 <div class=”container”>

 <div id=”header”>

 <ul id=”menu”>

 Portfolio

 Services

 About

 Testimonials

 Request a Quote

 <div id=”logo”>

 <h1>Creatif</h1>

 <small>A Family of Rockstar Wordpress

 Themes</small>

 </div>

 </div>

 <div id=”block_feature”>

 Featured Content

 </div>

 <div id=”block_content”>

 Content

 </div>

 </div>

</div>

 <div id=”footer”>

 <div class=”container”>

 Footer Stuff Goes in Here

 </div>

Meet	Creatif76
 </div>

</body>

</html>

and this extra CSS:

#header {

 padding-top:20px;

}

#logo h1, #logo small {

 margin:0px;

 display:block;

 text-indent:-9999px;

}

#logo {

 background-image:url(images/logo.png);

 background-repeat:no-repeat;

 width:194px;

 height:83px;

}

ul#menu {

 margin:0px; padding:0px;

 position:absolute;

 right:0px;

}

ul#menu li {

 display:inline;

}

Some things to note:

1. Rather than just placing the logo image in the HTML,
we’ve created a <div id=”logo”> and inside that
placed a <h1> with the title. Then using CSS to create a
massive text indent we’ve made the text vanish
and swapped it for the logo image. This has some
SEO benefits.

Meet	Creatif77

2. We’ve placed a very quick, unstyled menu using an
unordered list. By setting the display property to inline
for the elements, the list changes to a horizontal
set of elements.

3. Finally because our <div class=”container”> element
has position:relative, we can now use absolute
positioning inside and set right:0px for the menu and it
will be aligned to the right. This is great for a WordPress
theme because as the person creates new pages the
menu will extend, and this way it will stay right aligned.

Step 6 – Fixing Transparency in IE6

Now the one problem with transparent PNGs is that our friend
Internet Explorer 6 doesn’t support them! Fortunately that’s
relatively easily fixed with a quick hack via this website: http://
bjorkoy.com/past/2007/4/8/the_easiest_way_to_png/. We just
download a script and add this line in our CSS:

/* Fix up IE6 PNG Support */

img, #logo { behavior: url(scripts/iepngfix.htc); }

http://bjorkoy.com/past/2007/4/8/the_easiest_way_to_png/
http://bjorkoy.com/past/2007/4/8/the_easiest_way_to_png/

Meet	Creatif78

Step 7 – Fixing up the Menu

Now our menu is still looking pretty ugly, so let’s add a few styles to
finish it off, as follows:

ul#menu {

 margin:0px; padding:0px;

 position:absolute;

 right:0px;

}

ul#menu li {

 display:inline;

 margin-left:12px;

}

ul#menu li a {

 text-decoration:none;

 color:#716d6a;

 font-family:Verdana, Arial, Helvetica, sans-serif;

 font-size:10px;

 font-weight:bold;

 text-transform:uppercase;

}

ul#menu li a.active, ul#menu li a:hover {

 color:#211e1e;

}

Nothing very exciting here except that we’ve defined an “active”
style which is the same as the :hover style (namely it’s a darker
shade). That means we can write
and the link will darken.

Meet	Creatif79

Step 8 – Adding the Featured Portfolio Item Content

Now we have the base of our page laid out, it’s time to start adding
the content blocks. As mentioned earlier we are going to make this
site as a series of interchangeable content blocks. The first one is
the “Featured Project” block. So let’s add some HTML:

<div id=”block_featured” class=”block”>

 <div class=”image_block”>

 </div>

 <div class=”text_block”>

 <h2>Eden Website Design</h2>

 <small>in web design tagged

 corporate, web2</

 small>

 <p>And then a short description of the website

 would go in here. Something saying maybe what

Meet	Creatif80
 awesome skills I used on the project and how

 happy the client was.</p>

 View Project

 </div>

</div>

So that code goes below the <div id=”header”></div> code
from the previous steps. And unstyled it looks like this:

There are two important things to note here:

1. You will see that we have a <div class=”block”>
followed immediately by a <span class=”block_
inside”>. This is because the boxes we are drawing
have a double border, first there is a 1px dark grey
border, then inside that a 1px white border. So having
two elements means we can have a border on each.

Meet	Creatif81

2. Where we have the View Project button, instead of
using an image, we’re going to create a ‘button’ class
and then apply it to regular text links. This makes for a
very simple, reusable button look and feel.

Step 9 – Adding some Basic Styles

Now we apply some basic styling like this:

/*

 Block-Styles

*/

.block {

 border:1px solid #a3a09e;

 background-color:#ffffff;

 margin-bottom:20px;

}

.block_inside {

 display:block;

 border:1px solid #ffffff;

 background: #ffffff url(images/background_block_slice.jpg)

 repeat-x;

 padding:30px;

 overflow:auto;

}

.image_block {

 border:1px solid #b5b5b5;

 background-color:#d2d2d2;

 padding:5px;

 float:left;

}

.image_block img {

 border:1px solid #b5b5b5;

}

.text_block {

Meet	Creatif82
 float:left;

 width:430px;

 margin-left:30px;

}

So as mentioned above we have the .block class which just sets
a border and bottom margin. Then immediately inside we have
the .block_inside element which has a white border, thin slice
background (to give it that faint gradient), some padding and finally
an overflow value.

We have overflow:auto because we are going to have two floated
elements inside. Then inside we have an .image_block class which
gives our image a double border (one on the <div> and one on the
 itself) and which is floated left with our main .text_block
also floated left to form a mini columned layout.

So our layout now looks like this:

Meet	Creatif8�

Step 10 – Adding Text Styles

Now the text styling is all over the place at the moment. It sort of
looked OK in the previous screenshot because Firefox (used for the
screenshot) defaults to a Sans-Serif font. But if we’d screenshotted
Internet Exploere you would have seen a Serifed typeface instead.
So we should get the text sorted out now. We’ll add these bits of
CSS to our stylesheet:

body {

 margin:0px; padding:0px;

 background-color:#131211;

 font-family:Arial, Helvetica, sans-serif;

 color:#7f7d78;

 font-size:13px;

 line-height:19px;

}

/*

 Text-Styles

*/

h2 {

 margin:0px 0px 10px 0px;

 font-size:36px;

 font-family:Helvetica, Arial, Sans-serif;

 color:#000000;

}

small {

 color:#595856;

 font-weight:bold;

 font-size:11px;

 display:block;

 margin-bottom:15px;

}

a {

 color:#007de2;

 text-decoration:none;

}

Meet	Creatif8�
a:hover { text-decoration:underline; }

p { margin: 0px 0px 15px 0px; }

a.button {

 background:#32312f url(images/button_bg.jpg) repeat-x;

 padding:5px 10px 5px 10px;

 color: #ffffff;

 text-decoration: none;

 border:1px solid #32312f;

 text-transform:uppercase;

 font-size:9px;

 line-height:25px;

}

a.button:hover {

 background:#007de2 url(images/button_bg_o.jpg) repeat-x;

 border-color:#007de2;

}

Some notes on the code:

1. First we’ve updated the body tag to have a default font,
colour, size and line-height.

2. Then we’ve created a <h2> style which fixes the
margins and sets the font to Helvetica.

3. We’ve also created a <small> style for subheadings
(like what category a post is in).

4. We’ve created a link style and link:hover style.

5. We’ve reset the <p> styling so that the margins are fixed
from the stupid defaults.

6. Finally we’ve created that button class. Note that we’ve
defined it as “a.button”, or in other words all <a> tags
with the class = “button”. Why didn’t we just make

Meet	Creatif85

it “.button”? Well later on there is a good chance
that we will make a second button class for <input>’s
and it will be slightly different. So this way they won’t
accidentally interact.

7. In the button class you will see we’ve set some
padding, a border, a background image, a hover
style and a line-height attribute ... wait a line-height
attribute? Yes unfortunately this is a fix for IE which
otherwise cuts off the button.

With our extra styling, the page is starting to take shape!

Meet	Creatif86

Step 11 – Adding the Ribbon

One of the neat things about this design is the little blue ribbon
strips in the right corner. Thanks to a mix of CSS, transparent
PNG files and absolute positioning,
these are really easy to add. So
first we need to make the image.
Once again we create an image
with a transparent background and
save it as PNG-24, here’s
the image:

Next we need to place the image in our HTML, we can do it
like this:

 <div class=”block”>

 <div class=”image_block”>

</div>

<div class=”text_block”>

 <h2>Eden Website Design</h2>

 <small>in web design tagged corporate, web2</small>

 <p>And then a short description of the website would go

 in here. Something saying maybe what awesome skills I

 used on the project and how happy the client was. </p>

 View Project

 </div>

</div>

Meet	Creatif87

So you can see the tag there on the second line. Note we’ve
given it a class=”ribbon” and put it inside the .block element,
but outside the .block_inside element. That’s because if we do
it inside .block_inside it messes up the overflow:auto property
we set earlier. Right now this will just mess up our layout, so let’s
add some styling:

.block {

 border:1px solid #a3a09e;

 background-color:#ffffff;

 margin-bottom:20px;

 position:relative;

}

.ribbon {

 position:absolute;

 top:-3px;

 right:-3px;

}

You can see that we’ve:

1. Added a position:relative attribute to the .block
element. This is so that we can use absolute positioning
inside and have it relative to the .block element (and
not the whole page).

2. Then we’ve set the image to appear 3px past the right
edge and 3px past the top edge.

Easy! Back in the day, we would have had to use some super
complicated <table> layout to achieve that same effect. Here’s
how it’s looking now:

Meet	Creatif88

Step 12 – Creating the Second Block

With the ribbon added, our first block element is complete! Now
it’s time to start on the next <div> block. This one will have that
text about the theme and the recent projects list. So first we add
some HTML:

 <div id=”block_portfolio”>

<div id=”portfolio_items”>

 <div class=”mini_portfolio_item”>

 <div class=”block_inside”>

 <img src=”images/sample_mini_portfolio.jpg”

 class=”thumbnail” alt=”PSDTUTS” />

 <h3>PSDTUTS Theme Design</h3>

 <p>Website design for leading photoshop

 tutorial site and creation and maintenance of

 Wordpress theme.</p>

 View Project

 </div>

 </div>

Meet	Creatif89
 <div class=”mini_portfolio_item”>

 <div class=”block_inside”>

 <img src=”images/sample_mini_portfolio.jpg”

 class=”thumbnail” alt=”PSDTUTS” />

 <h3>PSDTUTS Theme Design</h3>

 <p>Website design for leading photoshop

 tutorial site and creation and maintenance of

 Wordpress theme. </p>

 View Project

 </div>

 </div>

 <div class=”mini_portfolio_item”>

 <div class=”block_inside”>

 <img src=”images/sample_mini_portfolio.jpg”

 class=”thumbnail” alt=”PSDTUTS” />

 <h3>PSDTUTS Theme Design</h3>

 <p>Website design for leading photoshop

 tutorial site and creation and maintenance of

 Wordpress theme. </p>

 View Project

 </div>

 </div>

</div>

<div id=”text_column”>

 <h2 id=”text_title”>Creatif is a WordPress

 portfolio theme for designers and creatives</h2>

 <p>You can use it to quickly turn WordPress into a

 portfolio website. Not familiar with WordPress?

 Fear not, the theme accompanies a book called How to Be a Rockstar Wordpress Designer

 by Rockstar Resources due for release in

 2008.</p>

 <p>The book teaches you to use WordPress theming

 to take advantage of this flexible CMS product to

 create dynamic sites.</p>

Meet	Creatif90
 <p>And as if that’s not enough, you can see a

 photoshop to HTML tutorial on designing the theme

 over at PSDTUTS

 and NETTUTS.</p>

 </div>

</div>

So that looks like lots of code, but it’s not really. Let’s go through it:

1. First we’ve created a container <div id=”block_
portfolio”> to wrap up the code segment.

2. Next we’ve got a <div id=”portfolio_items”>
which contains three identical <div class=”mini_
portfolio_item”>’s. We’ll talk about these in
a second.

3. Next we have a <div id=”text_column”> which is
filled with some text and a <h2> heading.

4. What we are going to do is float the text column
and portfolio items side by side to form two columns
of content.

5. We’re going to replace that <h2> with a
background image.

6. And we’ll style up those mini_portfolio_item divs to
look nice using a similar double border effect as we
did earlier.

Meet	Creatif91

Here’s the CSS:

/*

 Portfolio-Home-Styles

*/

#block_portfolio {

 overflow:auto;

 margin-bottom:20px;

}

#portfolio_items {

 width:615px;

 margin-right:25px;

 float:left;

}

#text_column {

 float:right;

 width:310px;

}

#text_column h2#text_title {

 text-indent:-9999px;

 background-image:url(images/creatif.jpg);

 background-repeat:no-repeat;

 width:310px;

 height:129px;

}

.mini_portfolio_item {

 border:1px solid #a3a09e;

 margin-bottom:10px;

}

.mini_portfolio_item .block_inside {

 background:none; background-color:#e2dddc;

 padding:25px 30px 15px 30px;

}

.mini_portfolio_item .thumbnail { float:left; margin-

right:20px; border:1px solid #979390; }

Meet	Creatif92

OK again, looks like a lot, but it’s not too bad. Let’s go through it
step by step:

1. First we’ve again used overflow:auto on the main
#block_portfolio element. That’s because we again
have two floated columns and if we don’t do this, they’ll
run over the footer.

2. Next we’ve set #portfolio_items to float to the left,
have a margin to separate it from the text column and a
width of 615px.

3. The #text_column is set to float to the right with a
width of 310px.

4. Inside the text column we’ve again done that trickery
with our <h2> tag where we use a massive text-indent
to make the text disappear and then instead use a
background image.

Next we have three style definitions for the mini_portfolio_item
elements as follows:

1. First we set a 1px dark border and a margin
between them.

2. Next we redefine the .block_inside styles to suit these
elements. Remember .block_inside was defined
earlier when we did the Featured Project area. So here
we are overriding the background image, changing the
background colour and changing the padding.

3. Finally we make the thumbnail images float left and
have a border.

Meet	Creatif9�

So all in all it’s looking like this:

Step 13 – Adding a Ribbon.

Now we want to add a “Recent Projects” ribbon to the top most
item. To do this we simply slot it in, in the same position in the
HTML as previously, like this:

<div class=”mini_portfolio_item”>

<img src=”images/ribbon_recent.png” class=”ribbon”

alt=”Recent Projects”/>

<div class=”block_inside”>

 <img src=”images/sample_mini_portfolio3.jpg”

 class=”thumbnail” alt=”AudioJungle” />

 <h3>AudioJungle Site Design</h3>

 <p>Website design for leading photoshop tutorial site

Meet	Creatif9�
 and creation and maintenance of Wordpress theme. </p>

 View Project

</div>

</div>

Then we add a position:relative attribute to the mini_portfolio_
item element like this:

.mini_portfolio_item {

 border:1px solid #a3a09e;

 margin-bottom:10px;

 position:relative;

}

But something strange happens: while the right hand side looks
correct, the top is getting cut off, as you can see in the screenshot:

The reason is that the element that our mini_portfolio_item is sitting
inside is cutting it off. So we check up and see that the mini_
portfolio_item’s are all inside a <div id=”portfolio_items”>. So
the solution is pretty easy, we add 3px of padding to the top which
is just enough space for our ribbon to show through. Here’s the
adjusted CSS:

Meet	Creatif95
#portfolio_items {

 width:615px;

 margin-right:25px;

 float:left;

 padding-top:3px;

}

Step 14 – Finishing off the Portfolio Items

Finally we’ve swapped in a few images and titles so we can see
how the page looks with 3 different items instead of the same one
repeated. Then we’ve also gotten rid of the View Project button and
gone with just a text link. This looks a bit cleaner and less busy. So
here’s the final portfolio items section (shown in Safari, don’t forget
to keep testing in different browsers!)

Meet	Creatif96

Step 15 – Adding Footer Content

Now there is just one more section to our page: the footer! Let’s
add some text content to it:

<div id=”footer”>

<div class=”container”>

 <div class=”footer_column long”>

 <h3>Designed by Collis Ta’eed, do with this as

 you please</h3>

 <p>You can read a photoshop tutorial

 for creating the design at <a href=”http://

 psdtuts.com”>PSDTUTS, You can read a

 PS->HTML tutorial for creating the site at

 NETTUTS and

 you can learn how to turn the HTML into a

 Wordpress theme in the upcoming book

 How to

 be a Rockstar Wordpress Designer</p>

 </div>

 <div class=”footer_column”>

 <h3>More Links</h3>

 <a href=”http://vectortuts.

 com”>VECTORTUTS

 <a href=”http://flashden.

 net”>FlashDen

 <a href=”http://audiojungle.

 net”>AudioJungle

 <a href=”http://freelanceswitch.

 com”>FreelanceSwitch

 FaveUp

 </div>

 <div class=”footer_column”>

Meet	Creatif97
 <h3>RSS</h3>

 RSS Feed

 What is RSS?

 </div>

 </div>

</div>

A few things to note:

1. We’ve created three <div class=”footer_column”>’s
to house the content of the footer, we’ll float these into
place in a second.

2. Since the first column is a different width we’ll give it
a second class called “long”. Note that you set two
classes like this: class=”class1 class2”, not like
this: class=”class1” class=”class2” which is
invalid markup.

3. Inside the columns I’ve used lists and <h3> tags
for the headings. It’s always good to use nice semantic
markup, both because it makes it more readable, and
because search engines like to see those headings and
lists all laid out properly.

Here’s how it’s looking!

Meet	Creatif98

Step 16 – Styling the Footer

Styling the footer is a pretty simple job, here’s the code we need:

/*

 Footer-Styles

*/

#footer {

 font-family:Verdana, Arial, Helvetica, sans-serif;

 font-size:10px;

}

.footer_column {

 float:left;

 width:120px;

 margin-right:30px;

}

Meet	Creatif99
#footer .long {

 width:610px;

}

#footer h3 {

 color:#e2dddc;

 text-transform:uppercase;

 font-size:10px;

}

.footer_column ul li, .footer_column ul {

 list-style:none;

 margin:0px;

 padding:0px;

}

Going through:

1. First we set the fonts for the #footer area.

2. Then we set all the columns to float with a default
width of 120px.

3. We override this width for the .long column. Notice
that we’ve set “#footer .long” instead of just
“.long”. The reason we do this is that “long” is the
kind of generic name that might get used again later
somewhere else, so it is a good idea to make the
definition more specific to avoid confusion.

4. Finally the <h3> and tags get some simple styles.

Meet	Creatif100

Step 17 – Adding a Favicon!

We’re almost finished our first page. It’s time to add a
few small details. First we’ll create a favicon – one of
those little icons that appear in your browser bar. This
little black square with a C for Creatif will do nicely. So
first we create a square image of what we want
in Photoshop.

There are lots of sites to make Favicons, I’ve used this one: http://
www.html-kit.com/favicon/. You simply upload the image and
hit Generate Favicon.ico. Place the .ico file into your /images/
directory and then hook it up with this line of HTML:

<link rel=”shortcut icon” href=”images/favicon.ico” />

http://www.html-kit.com/favicon/
http://www.html-kit.com/favicon/

Meet	Creatif101

Step 18 – Validating!

Now it’s time to check that our markup is w3c valid! So we go to
the Validator put in our code and cross fingers ... and pah-bow, we
are not valid, yet.

Meet	Creatif102

Looking down there are 14 errors. The number one problem is that
there is no alt text on any of the images... whoops! So going back
and adding them like so:

<img src=”images/ribbon_featured.png” class=”ribbon”

alt=”Featured Project”/>

That should fix up lots of the errors. So now we run it again and ...
still invalid. OK this one looks a bit trickier:

Fortunately the remaining 8 errors are actually the same
problem. Basically we’ve used an inline element (specifically a
) and then tried to put block
level elements like <div>’s inside. And that’s not allowed.
Luckily it’s easily fixed, we just change every instance of <span
class=”block_inside”> to a <div class=”block_inside”>.
And ... we pass!

Meet	Creatif10�

Completed the First Page

OK we have successfully made our basic page! Here you can see
me testing it in IE7 and thankfully there are no bugs.

With our basic framework in place we are now ready to build the
extra pages and the alternate colour scheme. We’ve lain a good
foundation and will be able to make use of a lot of the code we’ve
already written. This is why it’s really important to plan ahead. If you
don’t plan you can easily wind up with a lot of duplication, extra
code and other folly.

Meet	Creatif10�

Step 19 – Building the Blog Homepage

The next page we’re going to build is the blog homepage. This is
similar to the portfolio homepage in that it will have a featured blog
post and then a series of blog posts below. Eventually these will
become two related WordPress themes – one for portfolios, one
for blogs.

So first we duplicate our index.html – the file we’ve been working
on up ‘til now, and call the new file blog.html.

In our blog.html we first delete the whole <div id=”block_
portfolio”>. We’re going to replace that block with a different one
shortly. Then we replace the <div id=”block_featured”> with a
new block for featured blog posts which is just slightly different and
looks like this:

 <div id=”block_featuredblog” class=”block”>

 <img src=”images/ribbon_featuredblog.png”

 class=”ribbon” alt=”Featured Project”/>

 <div class=”block_inside”>

 <div class=”image_block”>

 <img src=”images/sample_blog.jpg”

 alt=”New Blog”/>

 </div>

 <div class=”text_block”>

 <h2>New Blog Design Launched</h2>

 <small>on april 13 in

 web design tagged

 blogging</small>

 <p>Lorem ipsum dolor sit amet, consectetuer

 adipiscing elit. Nulla mi risus, tempor in,

 gravida quis, rutrum vitae, massa. Suspendisse

 congue, nibh et lacinia sodales. </p>

 <p>Risus nulla fringilla enim, sit amet

 adipiscing sapien risus sed velit. Sed

Meet	Creatif105
 vitae justo. In quis lorem nec justo

 varius sodales. Nullam eleifend accumsan

 mi. Nunc at velit. Maecenas velit. </p>

 Read More

 </div>

 </div>

</div>

So really all we’ve done is change the id tag to be block_
featuredblog, the ribbon image and the content. Essentially though
it’s the same layout. So let’s take a look and see how it’s looking:

Step 20 – Adjusting some CSS

So that pretty much works as is, we’ll just make a couple of small
adjustments to the CSS like this:

Meet	Creatif106
#block_featuredblog .text_block { padding-top:5px;

width:490px;}

h2 {

 margin:0px 0px 10px 0px;

 font-size:36px;

 font-family:Helvetica, Arial, Sans-serif;

 color:#000000;

 line-height:39px;

 letter-spacing:-1px;

}

Here we’ve adjusted the “text_block” class but only when it’s in
the #block_featuredblog element. It now has a tiny bit of padding
at the top and is wider.

Also we’ve added an appropriate line-height to the heading and on
a whim adjusted the text kerning by -1px. And we’re finished with
this element, that was easy!

Meet	Creatif107

Step 21 – Making the Main Content Area

Making this content area is the last big thing we need to do really. It
will form not only the bottom of this page, but also the whole basis
of the generic page (with some adjustments of course!). So first
let’s put in some really basic HTML:

 <div id=”block_content”>

 <div id=”content_area” class=”block”>

 <div class=”block_inside”>

 Content

 </div>

 </div>

 <div id=”sidebar”>

 <div class=”block_inside”>

 Sidebar Content

 </div>

 </div>

 </div>

Basically what we’ve created is a container element – <div
id=”block_content”> and then inside that we’ve got two blocks
which we’re going to float to either side. You’ll see we’re making
use of our rather handy <div class=”block_inside”> elements to
add the double border. Here’s the CSS to make them sit correctly:

/*

 Block-Content-Styles

*/

#block_content {

}

#content_area {

 width:665px;

 float:left;

}

#sidebar {

 float:left;

Meet	Creatif108
 width:281px;

 position:relative;

 left:-1px;

 margin-top:15px;

 background-color:#e2dddc;

 border:1px solid #a3a09e;

}

#sidebar .block_inside {

 background:none;

 background-color:#e2dddc;

}

Going through the styles:

1. Then we’ve given the #content_area box and the
#sidebar box each a width and a float.

2. Next we’ve moved the sidebar to the left by 1px using
a position:relative. We have done this so that the
left border will overlap and it will look like it’s jutting out.

3. Additionally we’ve added a 15px top margin so that the
sidebar isn’t top-aligned. Currently it looks a bit odd,
but when we add some content it will look great.

4. Finally we’ve redefined the .block_inside in the
#sidebar element to override the background image
and instead give it that beigey colour for a background.

Meet	Creatif109

Step 22 – Adding Content

Now we add some content to our two elements to style:

<div id=”block_content”>

 <div id=”content_area” class=”block”>

 <div class=”block_inside”>

 <h2>Working on a New Project</h2>

 <small>on april 13 in

 web design tagged

 blogging</small>

 <p>Lorem ipsum dolor sit amet,

 consectetuer adipiscing elit. Nulla

 mi risus, tempor in, gravida quis, rutrum

 vitae, massa. Suspendisse congue, nibh et

 lacinia sodales. </p>

 <p>Risus nulla fringilla enim, sit amet

 adipiscing sapien risus sed velit. Sed

 vitae justo. In quis lorem nec justo

 varius sodales. Nullam eleifend accumsan

 mi. Nunc at velit. Maecenas velit.

 Read More</p>

 <div class=”separator”></div>

 <h2>Design Awards!</h2>

 <small>on april 13 in

 web design tagged

 blogging</small>

 <p>Lorem ipsum dolor sit amet,

 consectetuer adipiscing elit. Nulla

 mi risus, tempor in, gravida quis, rutrum

 vitae, massa. Suspendisse congue, nibh et

 lacinia sodales. </p>

 <p>Risus nulla fringilla enim, sit amet

 adipiscing sapien risus sed velit. Sed

 vitae justo. In quis lorem nec justo

 varius sodales. Nullam eleifend accumsan

Meet	Creatif110

 mi. Nunc at velit. Maecenas velit.

 Read More</p>

 <div class=”separator”></div>

 <h2>This Site is Almost Complete

 Finally...</h2>

 <small>on april 13 in

 web design tagged

 blogging</small>

 <p>Lorem ipsum dolor sit amet,

 consectetuer adipiscing elit. Nulla

 mi risus, tempor in, gravida quis, rutrum

 vitae, massa. Suspendisse congue, nibh et

 lacinia sodales. </p>

 <p>Risus nulla fringilla enim, sit amet

 adipiscing sapien risus sed velit. Sed

 vitae justo. In quis lorem nec justo

 varius sodales. Nullam eleifend accumsan

 mi. Nunc at velit. Maecenas velit.

 Read More</p>

 </div>

</div>

<div id=”sidebar”>

 <img src=”images/ribbon_browse.png”

 class=”ribbon” alt=”Featured Project”/>

 <div class=”block_inside”>

 <h3>Subscribe</h3>

 RSS Feed

 Email Updates

 <h3>Categories</h3>

 News

 Marketing

 General

Meet	Creatif111
 Great Sites

 <h3>Archives</h3>

 June 2008

 May 2008

 April 2008

 March 2008

 </div>

 </div>

<!-- a Clearing DIV to clear the DIV’s because overflow:

auto doesn’t work here -->

 <div style=”clear:both”></div>

</div>

OK there are three important things to mention here:

1. First in the content area you’ll see we’ve added three
dummy blog posts and in between each is an empty
<div class=”separator”> that we’ll style shortly into
a thin line with some spacing.

2. Next we’ve added a ribbon image to the sidebar in
much the same way as previously.

3. Finally we’ve used a clearing <div> at the bottom. Now
previously in this tutorial we’ve been using overflow:
auto; to deal with floated columns, but when we
add the margin-top in the previous step to move the
sidebar down it messes with the overflow and creates
a scrollbar. So since there may be occasions when the
sidebar will be longer than the content box we’re going
to use this method of clearing floating <div>’s instead.

Now we’ll add some basic styling to fix it all up as follows:

Meet	Creatif112
#sidebar h3 {

 font-size:20px;

 line-height:23px;

}

#sidebar ul { margin:10px 0px 30px 0px; padding:0px; }

#sidebar ul li { list-style:none; margin:0px 0px 5px 0px;

padding:0px; }

#sidebar ul li a { color:#7f7d78; }

#sidebar ul li a:hover { color:#0172dd; text-decoration

none; }

#content_area h2 { font-size:32px; line-height:31px; }

#content_area .separator {

 border-top:1px solid #e3e3e3;

 margin-top:40px;

 padding-top:40px;

}

Two things to note:

1. We’ve formatted the lists in the sidebar to remove
the bullet points and space them out nicely

2. We’ve also created a separator style using margin and
padding along with 1px border

And that’s it, our #block_content element is complete!

Meet	Creatif11�

Step 23

Making our final page is a piece of cake now. We just duplicate our
blog.html and call it page.html this time. Then remove the featured
blog post and alter the HTML of the #block_content area as follows:

 <div id=”block_content”>

 <div id=”content_area” class=”block”>

 <div class=”block_inside”>

 <h4>Services</h4>

 <h2>Branding</h2>

 <p>Lorem ipsum dolor sit amet,

 consectetuer adipiscing elit. Nulla

 mi risus, tempor in, gravida quis, rutrum

Meet	Creatif11�
 vitae, massa. Suspendisse congue, nibh et

 lacinia sodales. </p>

 <p>Risus nulla fringilla enim, sit amet

 adipiscing sapien risus sed velit. Sed

 vitae justo. In quis lorem nec justo

 varius sodales. Nullam eleifend accumsan

 mi. Nunc at velit. Maecenas velit. Read More</p>

 </div>

 </div>

 <div id=”sidebar”>

 <img src=”images/ribbon_navigation.png”

 class=”ribbon” alt=”Featured Project”/>

 <div class=”block_inside”>

 <h3>Services</h3>

 Branding

 Graphic Design

 Web Development

 Marketing

 <h3>Related Portfolio Items</h3>

 Eden Branding

 FlashDen Logo

 Design

 PSDTUTS Website

 </div>

 </div>

<!-- a Clearing DIV to clear the DIV’s because overflow:

auto doesn’t work here -->

Meet	Creatif115
 <div style=”clear:both”></div>

</div>

Which is pretty much the same HTML as previously just with some
different text and a new ribbon. The only real change is that now we
have a title and above that a subtitle wrapped in an <h4> tag. So
we can style that with a couple of lines of CSS as follows:

h4 {

 color:#007de2;

 margin:0px 0px 0px 0px;

}

And that is that!

Meet	Creatif116

Step 24 – It don’t matter if it’s Black or White!

Now we’re going to do some very simple CSS to switch the site
from light to dark. What’s neat about this is the only HTML we need
to alter is this one line:

<body id=”dark”>

That’s it! With that one bit of extra HTML code we can make all the
CSS adjustments necessary. This means later we can make a little
Javascript button that switches the stylesheet. The way it’s going to
work is for any class which needs to change we just add an extra
style beginning with body#dark. So first of all we say:

body#dark {

 background-color:#1e1d1b;

}

body#dark #main {

 background:#292826 url(images/background_dark_slice.

jpg) repeat-x;

}

body#dark #main .container {

 background-image:url(images/background_dark.jpg);

}

body#dark #footer {

 background-image:url(images/background_dark_footer.

jpg);

}

body#dark ul#menu li a.active, ul#menu li a:hover {

 color:#ffffff;

}

Meet	Creatif117

And that tells the browser that if <body id=”dark”> then to
override the styles for #main, #main .container, #footer, and
the active and hover states of the menu, swapping in some new
background images and changing the text colour to white.

Step 25 – Borders and Fixing the Text

As you can see in the image below our footer is fixed thanks to the
new background image and colour, there’s just two more fixes: the
“Creatif is a WordPress ...” text and the borders around the boxes
which are quite light and should be dark now. So we do this:

Meet	Creatif118
body#dark .block, body#dark .mini_portfolio_item {

 border-color:#1b1a19;

}

body#dark #text_column h2#text_title {

 background-image:url(images/creatif_dark.jpg);

}

Step 26 – Alternate Colour!

And with those adjustments, we now have an alternate colour
scheme all controlled by a single id tag on the <body> element.
That’s the magic of transparent PNG files and CSS at work.

Meet	Creatif119

Further	Resources	on	HTML	&	Photoshop

You can find additional help on designing with Photoshop and
building websites at:

PSDTUTS – http://psdtuts.com
NETTUTS – http://nettuts.com
CSS-Tricks – http://css-tricks.com
WebDesignerWall – http://webdesignerwall.com

http://psdtuts.com
http://nettuts.com
http://css-tricks.com
http://webdesignerwall.com

Introduction	to	Themes
A theme can completely transform your WordPress
site, by changing graphics, showing or removing
features, adding extra functionality or simply by
rearranging the page.

If you understand HTML, then most themes are fairly
simple to understand. In this chapter we’ll review
some theme basics that we’ll need to use to build
our Creatif themes in the following chapters.

Introduction	to	Themes122

Finding	and	Installing	Themes

Themes reside in a directory in your WordPress install. If you
FTP into your server you will see a directory called wp-content,
inside of which sit three important directories: uploads, themes
and plugins.

If you open up the Themes directory you should see at least two
more folders inside. Each folder represents a theme and by default
WordPress comes with the Classic and Default (Kubrick) themes.

Fig 4-1 – WordPress offer a large selection of free themes, whilst ThemeForest lets WordPress
theme designers sell their work.

Introduction	to	Themes12�

You can find other themes online at sites like:

• WordPress.org (Free Themes) – http://wordpress.
org/extend/themes/

• ThemeForest (Paid Themes) – http://themeforest.net

Once you download a theme, simply upload its folder into your
themes directory on the server. Then log into WP-Admin, click on
Appearance and you will see a sequence of theme previews. Click
the preview for your new theme and it will be installed.

Editing	Theme	Files	through	WordPress

It is possible to edit theme files through the WP-Admin dashboard.
Simple click on Appearance > Editor. You will see a listing of all the
files in the theme and you can edit pages and CSS files by clicking
on the file and editing in the text area.

Fig 4-2 – WordPress’ WP-Admin Theme Editor.

http://wordpress.org/extend/themes/
http://wordpress.org/extend/themes/
http://themeforest.net

Introduction	to	Themes12�

To be able to edit a theme however the files must have the correct
permissions set, specifically the files for the theme must be
writable. You can update these permissions through your
FTP program.

How	a	Theme	Works

A WordPress theme is a set of PHP files, images and CSS, bundled
up in a directory. The PHP files are mostly HTML and structured so
that when stitched together they create a single HTML document.
So for example if you grabbed the header.php, index.php,
sidebar.php and footer.php and stitched their code together
into one file, you’d get a single HTML page with some little bits of
PHP code here and there. Separate files are called in using special
statements called includes. For common items like the sidebar,
footer and header, they look like this:

<?php get_sidebar(); ?>

So to stitch a file together, you would get the main file – index.
php – and then wherever there is an include line like the one shown
above, you would swap in the contents of the included file, for
example sidebar.php. We’ll look more at includes later.

When a page on your site is called for, WordPress displays the
theme page and wherever you’ve placed PHP code, it executes
that code and fills in the appropriate content. So for example if your
theme had the code:

<?php wp_list_categories(); ?>

WordPress would substitute the code for an unordered list of
categories before displaying the page. These commands are called
Template Tags. You can find lists of Template Tags in the WordPress

Introduction	to	Themes125

Codex along with their syntax and usage details – http://codex.
wordpress.org/Template_Tags.

WordPress themes are essentially just the final layer between
WordPress and the end user. All the main work is done by
WordPress behind the scenes, retrieving posts, inserting comments
and so on. Then the theme acts like a filter outputting the results in
neat HTML and CSS.

How	to	Make	a	Theme	in	60	Seconds

The simplest way to get your head around a theme is to build one!
So here’s a sixty second example:

1. Create a New Directory, call it BasicTheme

2. Inside the BasicTheme directory, create a file called
style.css but leave it empty

3. Next create a file called index.php and enter the
following HTML code into the new file:

<html>

<head>

 <title>Test Theme</title>

</head>

<body>

</body>

</html>

Now upload the theme to your server and you should see it appear
in the Presentation section. Click on BasicTheme to choose it and
take a look at your blog.

http://codex.wordpress.org/Template_Tags
http://codex.wordpress.org/Template_Tags

Introduction	to	Themes126

Add	a	Little	Bit	of	WordPress	PHP

OK so your theme isn’t doing very much, but you should see that
the HTML you created is showing through.

Now edit your index.php file and change the title tag to:

<title><?php bloginfo(‘name’); ?></title>

Upload this file again and test your theme out now. You’ll see
that the WordPress blog’s name is appearing in the title bar of
your browser.

That’s	How	Themes	Work

You’ve now seen the basic mechanics of a theme. You place some
HTML into a bunch of PHP files, then you replace the bits you want to
be live data from WordPress with short WordPress/PHP commands.

In this case bloginfo(‘name’) tells WordPress to show the title of
the blog.

There are hundreds of Template Tags to do different things in
WordPress. Using different Template Tags you can make posts,
categories, links and just about anything else appear.

Everything is there waiting in WordPress, but when you create a
theme you determine what gets shown and how it gets shown.

So in our basic theme we decided to only show the blog title. That’s
not to say that posts, comments and all the other stuff aren’t there,
we have just chosen not to make them appear on the page.

The most useful thing to learn in order to make themes are the
Template Tags you write in PHP to tell WordPress what to output.

Introduction	to	Themes127

Template	Tags

Template Tags are in fact PHP functions. They have been created
in the main WordPress codebase and when you write one onto
the page, WordPress executes the function code to produce
some results.

As you know from basic PHP, a function looks like this:

functionname(parameter 1, parameter 2, ...);

or with the addition of the PHP tags:

<?php functionname(parameter 1, parameter 2, ...); ?>

The parameters are different options that are passed to the function
to help it decide what to output. For example with the wp_list_
categories() Template Tag you can choose to list categories with
the number of posts inside each category by writing this:

<?php wp_list_categories(‘showcount=1’); ?>

Alternatively if you wanted the number of posts to be hidden, you
would write this:

<?php wp_list_categories(‘showcount=0’); ?>

Functions can also have no variables passed to them, in which
case the code between the brackets is just empty like this:

<?php wp_list_categories(); ?>

If you call a function without giving it any inputs, and it requires
some, the function will generally fall back on default values. For
example the potential input parameters with their default values for

Introduction	to	Themes128

the wp_list_categories Template Tag are:

‘show_option_all’ => ‘’,

‘orderby’ => ‘name’,

‘order’ => ‘ASC’,

‘show_last_update’ => 0,

‘style’ => ‘list’,

‘show_count’ => 0,

‘hide_empty’ => 1,

‘use_desc_for_title’ => 1,

‘child_of’ => 0,

‘feed’ => ‘’,

‘feed_image’ => ‘’,

‘exclude’ => ‘’,

‘hierarchical’ => true,

‘title_li’ => __(‘Categories’),

‘echo’ => 1,

‘depth’ => 0

So when you write in wp_list_categories you can have all or
none of those values in the brackets. If you have more than one
parameter that you are passing, you simply separate them with an
& character like this:

<?php wp_list_categories(‘showcount=1&hide_empty=0’); ?>

To figure out what all these values do and mean, you can refer to
the wp_list_categories page in the WordPress Codex – http://
codex.wordpress.org/Template_Tags/wp_list_categories

Note: In reality everything in the quotation marks is one PHP
parameter (a string) which is why it doesn’t fit the parameter
1, parameter 2 syntax that normal functions follow. WordPress
Template Tags instead are passed a single string and that string is
then broken up wherever a & character appears. This is done to
make Template Tags easier to use, read and understand.

http://codex.wordpress.org/Template_Tags/wp_list_categories
http://codex.wordpress.org/Template_Tags/wp_list_categories

Introduction	to	Themes129

Finding	and	Understanding	Template	Tags

There are many Template Tags available for use in your themes,
and the best way to learn them is simply to look them up in the
WordPress Codex. Each listing contains a specification of the way
the Template Tag should be used – this is called the syntax – as
well as examples of its usage.

The	Loop

A loop is a piece of code that is executed multiple times, with some
variables that change each time. For example if you wanted to
output the numbers 1 to 10, you might write this PHP code:

for ($counter = 1; $counter <= 10; $counter += 1) {

 echo $counter;

}

Here the code between the { brackets } is executed and each
time the value of $counter changes by +1 until the end condition
is met – namely that $counter becomes less than or equal to 10.

That loop is called a For Loop. Another type of Loop is a While
Loop. While Loops execute a set of code while a condition is true.
So the same example written with a While Loop would look
like this:

$counter = 1;

while ($counter <= 10) {

 $counter += 1;

}

In WordPress themes there is one major loop that appears on
almost all pages. In WordPress terminology it’s called The Loop and
it processes a list of any Posts that are meant to be shown on that

Introduction	to	Themes1�0

page. Inside the loop you can write code that shows those Posts in
different ways.

Here’s the simplest possible version of The Loop:

<?php while (have_posts()) { ?>

 <?php the_post(); ?>

 <h2><?php the_title(); ?></h2>

 <?php the_content(); ?>

<? } ?>

So the code says that while have_posts() is returning true – or in
other words while there are Posts to be shown – we should repeat
the code in the middle over and over.

The code in the middle has three parts:

1. the_post() is a special function that does a bit of
behind the scenes work to prepare the post to be
outputted in the next lines.

2. the_title() outputs the post’s title

3. the_content() outputs the post’s main body

So in plain English, our loop says while we have posts, go through
each one and show the post title as a heading and then the post
content. That’s it!

A	More	Common	Version	of	The	Loop

The while loop above uses the most common way of writing loops
and statements in PHP. However there is an alternate syntax that is

Introduction	to	Themes1�1

often used when writing PHP mixed in with HTML. Instead of using
{ and } brackets like this:

<?php while(conditions) { ?>

... HTML CODE ...

<?php } ?>

You can use colons and an endwhile statement, like this:

<?php while(conditions) : ?>

... HTML CODE ...

<?php endwhile; ?>

Both versions do exactly the same thing. The second one is a
little easier to work with in HTML because it’s obvious what the
endwhile is referring to, whereas {} are a little more ambiguous.

The version of The Loop we looked at just above follows a regular
way of writing loops in PHP. In practice in WordPress, most people
write the loop using the alternate syntax. Additionally before you
run the while loop, it’s a good idea to check if there are even any
posts around, so here is a more common version of The Loop that
you are likely to come across:

<?php if (have_posts()) : while (have_posts()) : the_

post(); ?>

 <h2><?php the_title(); ?></h2>

 <?php the_content(); ?>

 <?php endwhile; else: ?>

 <p>Sorry, no posts matched your criteria.</p>

 <?php endif; ?>

So here we are first checking if there are any posts, if so then while
there are posts we show the title and content of each, and if there
aren’t any posts we print out a little statement to that effect.

Introduction	to	Themes1�2

As you work with more themes you will see other variants of The
Loop. The important thing to note is that it is simply a way of
querying the WordPress server to get your posts to show.

Files	and	What	They	Do

Although index.php and style.css are the only totally mandatory
files needed to make a WordPress theme, there are a number of
files that have special meaning to WordPress. These different files
sit in a hierarchy and when WordPress is asked to show a page, it
runs through the hierarchy searching for the right file to show. At
the bottom of the chain is index.php, so if nothing else is available
that’s the one that gets shown.

So let’s say you have a WordPress install sitting at www.example.
com. Now for example a URL a reader might visit when going to
your WordPress site is:

Example Post URL

www.example.com/?p=1
www.example.com/post_title (with Permalinks set)

Now for a Post, WordPress first looks to see if there is a file in
the theme directory called single.php, if that exists, that is the
template file that will be used to display this page. If single.php
isn’t there, then WordPress defaults to showing index.php.

So the hierarchy goes:

single.php > index.php

Now another URL a reader might visit is:

Introduction	to	Themes1��

Example Page URL

www.example.com/?page_id=2
www.example.com/page_title (with Permalinks set)

In this case WordPress first looks to see if the Page in WordPress
has a special Page Template selected for it (this is set on the Edit
Page screen). So for example, let’s say there is a template file
called some_template.php. If the Page isn’t meant to use a special
Page Template, then WordPress checks to see if there is a generic
page template with the file name page.php, if that’s not there either,
then as usual WordPress falls back and displays our good old
index.php file.

So in this case the hierarchy goes:

some_template.php > page.php > index.php

The	File	Hierarchy

Here is a list of all the different file hierarchies that WordPress
looks for:

Date Archives – www.example.com/2008/12

date.php > archive.php > index.php

Category Archives – www.example.com/category/category_title

category-id.php > category.php > archive.php > index.php

Tag Archives – www.example.com/tag/tag_name

tag-slug.php > tag.php > archive.php > index.php

Author – www.example.com/author/author_name

author.php > archive.php > index.php

Introduction	to	Themes1��

Home – www.example.com

home.php > index.php

Single Post – www.example.com/post_title

single.php > index.php

Page – www.example.com/page_title

some_template.php > page.php > index.php

Search – www.example.com/?s=search_word

search.php > index.php

404 – www.example.com/something_that_isnt_there

404.php > index.php

Including	Files

Because some parts of a site are repeated over and over, it’s
simpler to place the code for them in a separate file one time, and
then write an include statement many times. A good example of
this is the sidebar. If you had for example an archives page, an
author page, a homepage and a single Post page and all of them
shared the same sidebar, it makes sense to have a single sidebar
file and include it each time. That way any changes to the sidebar
are only made in one spot.

You can include any file you create into another using this line
of code:

<?php include (TEMPLATEPATH . ‘/filename.php’); ?>

This is a regular PHP Include, and TEMPLATEPATH is a special
variable in WordPress that points to the theme folder.

Introduction	to	Themes1�5

Additionally there are four special files – sidebar.php, footer.php,
header.php and comments.php that have slightly different includes
that you can use:

<?php get_header(); ?>

<?php get_footer(); ?>

<?php get_sidebar(); ?>

<?php comments_template(); ?>

Of course for any of these you could simply use the regular PHP
Include mentioned above instead, but since the header, footer,
sidebar and comments are the most common they have their own
more readable versions.

Conditional	Tags

So you may be wondering, if all the different file types default
back to index.php in the end, how can that one file handle all
the different cases. For example how does it know if it is meant
to show content for the homepage, a Page, a single Post or
something else?

The answer is by using a special type of Template Tag called a
Conditional Tag. Here is an example Conditional Tag to check if the
page being shown is a single Post page:

<?php is_single(); ?>

Let’s say for example this line of code is in the index.php
file. And let’s say there are no other theme files and the URL
example.com/post_title has been accessed, then that Conditional
Tag would return True. Now on its own that isn’t very useful, but we
can use the code in an if statement like this:

<?php if(is_single()) : ?>

Introduction	to	Themes1�6
 ... Some code to show on single Posts

<?php else: ?>

 ... Some code to show on other pages

<?php endif; ?>

So the code above checks if we’re meant to be displaying a single
Post, if the answer is yes then we execute the code below, else we
show some other code.

There are lots of conditional tags that you can use, some
examples include:

is_home() – Is this the homepage?

is_page() – Is this a Page?

is_single() – Is this a single Post?

is_category() – Is this a category archive?

is_author() – Is this an author archive?

You can find more conditional tags as well as details on how
you can use them in different ways in the Codex – http://codex.
wordpress.org/Conditional_Tags

The	WordPress	Default		
Theme	–	Kubrick

Now that you’ve got the basics of how WordPress themes work, it’s
a good idea to inspect a real world theme and see how it’s made
up. Kubrick, WordPress’ default theme, comes with every install
and is a great place to learn about and experiment with themes.

http://codex.wordpress.org/Conditional_Tags
http://codex.wordpress.org/Conditional_Tags

Introduction	to	Themes1�7

1. Download Kubrick
Log in via FTP to your WordPress install and download
the theme files from wp-content/themes/default to
a new directory on your hard drive. Or if you are using a
local copy, simply open the directory.

2. Look Through the Files
Browse through the files and note how they come
together. The main file is index.php. If you look through
you should quickly see how the file has a number of
includes to pull in the files header.php, sidebar.php
and footer.php.

3. Rename the Theme and Experiment
Rename the folder so that you don’t override the
original Default theme, then re-upload it via FTP to
the themes directory. Or if you are using a local copy,
simply duplicate the folder and give it a new name. Log

Fig 4-3 – WordPress’ Default Theme – Kubrick.

Building	a	Basic	Theme:	Creatif	Blog1�8

in to WP-Admin, click on Appearance and select your
renamed theme. You can then try modifying parts of the
files and testing out what they do to your WordPress
when you upload them back. Don’t be afraid to break
things, you can always retrieve the original Kubrick
theme and fix it back up if need be.

Using	Kubrick	as	a	Base

The WordPress Codex is great for looking up code and finding out
how to do things when making or adjusting themes. An alternative
method is to simply use another theme as a base to build off.

The best themes to use for this are the default themes – Kubrick
and Classic. These two themes are simple, clean and adhere to
good practices and conventions.

Not only can copy and paste segments of code to save you time,
but they also include all the main files that you should replicate in
your own themes.

Further	Resources	on	Theming	
Basics

You can find additional help on the basics of themes by visiting
these resources:

1. WPDesigner’s Theming Tutorials –
 http://www.wpdesigner.com/category/tutorials/

2. NETTUTS’ WordPress Tutorials –
http://nettuts.com/category/tutorials/wordpress/

3. WordPress Codex Theme Development –
http://codex.wordpress.org/Theme_Development

http://www.wpdesigner.com/category/tutorials/
http://nettuts.com/category/tutorials/wordpress/
http://codex.wordpress.org/Theme_Development

Building	a	Basic	Theme:	
Creatif	Blog
In this book we’ll be making use of WordPress
to power all sorts of sites, however it is first and
foremost designed to be a blogging platform. So
the best place to begin our theming work is with a
blog theme.

WordPress has produced one of the easiest to
use theming engines around. The amazing way in
which WordPress works allows for a huge level of
customization. There is virtually nothing you can’t
show, hide, feature, dynamically add or change to
your liking.

In this chapter we’ll go through all you need to
know to create your own, custom blog theme
from scratch. We’ll make use of much of what you
learnt in Chapter 4, including Template Tags, file
hierarchies and The Loop, as these will form the
backbone of your theme!

Building	a	Basic	Theme:	Creatif	Blog1�1

Setting	up	WordPress

Before we get into the theme development, the first thing to do is
get a copy of WordPress ready to theme. You should go through
and add a few categories and some sample Posts. Doing this now
means that as you work on your theme you’ll be able to see the
results of your efforts as you go along.

There is one particular thing that you need to do before we build
the Creatif Blog theme and that is to add a featured post image
to the most recent Post. To do this, create the Post, then while
editing scroll down to the area marked Custom Fields. These fields
allow us to add extra information to a Post. We’ll cover them in
detail in Chapter 6. For now simply create a new Custom Field
with the name large_preview and under value paste in the URL
of an image to use for your featured post. If you don’t have an
image online, you can upload one using WordPress’ regular upload
functionality and then copy the URL over.

Fig 5-1 – Adding Custom Fields.

Building	a	Basic	Theme:	Creatif	Blog1�2

Setting	up	the	Theme

Two files are absolutely necessary for theme development –
index.php and style.css. In Chapter 4, we looked at how you
can create an extremely basic theme just by adding a relatively
blank index.php file and style.css file to your theme directory.
Of course our basic theme didn’t do very much, so we’ll now go
through constructing a more functional theme.

When developing a theme, style.css is a good place to start.
It sets up a number of definitions that make the theme easy to
identify using a regular CSS comment, here’s an example from
WordPress’ documentation:

/*

Theme Name: Rose

Theme URI: the-theme’s-homepage

Description: a-brief-description

Author: your-name

Author URI: your-URI

Template: use-this-to-define-a-parent-theme--optional

Version: a-number--optional

.

General comments/License Statement if any.

.

*/

So we’ve got:

• The theme name

• A URI (or URL) usually to a general download site for
the theme

• A short description

Building	a	Basic	Theme:	Creatif	Blog1��

• The author’s details

• And some general theme development details – for
example if you have built your theme using the default
Kubrick theme as a base, you might list that here.

Setting these details not only provides information for users of your
theme but also creates the basic theme listing in your WordPress
WP-Admin area.

So to begin building our first Creatif theme, create a new directory
for the theme. Then create a file called style.css in your favorite
text editor and place this information in:

/*

Theme Name: Creatif Blog

Theme URI: http://rockablepress.com

Description: For the book ‘How to Be a Rockstar WordPress

Designer!’

Author: Collis Ta’eed & Harley Alexander

Author URI: http://rockablepress.com

Version: 1.0

.

This theme can be used for commercial or non-commercial use

so long as it is not redistributed or resold in any way.

.

*/

Next we’ll create a simple index.php file, just type in the words
Hello World! and add the theme folder to your WordPress install.

http://rockablepress.com/creatif
http://rockablepress.com

Building	a	Basic	Theme:	Creatif	Blog1��

As you know activating a theme is straightforward. Once index.
php and style.css are created, open up WP-Admin and click on
Appearance. Notice the details we set in the CSS file are showing
here on the theme’s listing. Select the new theme by clicking on it
and then press OK through the preview to get it activated on your
WordPress site.

If you’ve activated your theme correctly, saved the correct files and
written the right things, you can now go to your WordPress install in
a browser and see the words: Hello World!

Absolute	URLs

Ordinarily when developing a website, you use what are known
as Relative URLs to reference images, stylesheets and Javascript
includes. These are relative to your main HTML document, however

Fig 5-2 – The Creatif Theme on the Appearance page.

Building	a	Basic	Theme:	Creatif	Blog1�5

in WordPress, the theme files (such as index.php) are applied as a
template to files in a whole other directory structure. In other words
any relative links will break when applied in a theme. Instead you
need to have Absolute URLs to your assets. So instead of:

/images/sample.jpg

You need to write:

http://example.com/wp-content/themes/theme_name/images/

sample.jpg

Of course if you were to change the theme folder that your files
have been placed in, say from theme_name to theme_name2,
without editing your theme files, all your Absolute URLs would
break. Fortunately, WordPress is equipped with a simple Template
Tag to make life easier.

bloginfo – As the name suggests, the bloginfo template tag
gets some basic information about your blog. Specifying what
information is needed is as simple as adding a parameter. If you
need the main URL of a WordPress blog, just write ‘url’:

<?php bloginfo(‘url’); ?>

So going on this, one option for linking to our image might be:

<?php bloginfo(‘url’); ?>/wp-content/themes/theme_name/

images/sample.jpg

However that is still quite cumbersome and again if your user
happens to install the theme in a different folder, everything will
break. Fortunately WordPress provides an alternate parameter:
template_directory. This fancy bit of code does all the hard

Building	a	Basic	Theme:	Creatif	Blog1�6

work, and returns the directory of your currently active
WordPress theme:

http://example.com/wp-content/themes/theme_name

So to grab our image and place it into an HTML tag, we
simply write:

<img src=“<?php bloginfo(‘template_directory’); ?>/images/

sample.jpg” alt=“Example Image!” />

To see bloginfo’s other options, consult the Codex: http://codex.
WordPress.org/Template_Tags/bloginfo

Bringing	your	HTML	into		
WordPress

So in this chapter we’re going to take the HTML for the Creatif Blog
theme from Chapter 3 and add WordPress functionality to create a
working theme.

As you will recall, the design has several sections:

• the header – with logo and menu;

• the featured post;

• the main content area;

• the sidebar; and

• a footer.

http://codex.WordPress.org/Template_Tags/bloginfo
http://codex.WordPress.org/Template_Tags/bloginfo

Building	a	Basic	Theme:	Creatif	Blog1�7

What we’ll be doing is going through each of these sections of the
HTML and swapping the dummy content we placed during the
markup phase with WordPress Template Tags, includes, loops
and functions.

Now the HTML we created was for a few different Creatif themes
that we’re building in this book. In this chapter we are modifying the
blog version of the site.

So to bring over the HTML from Chapter 3:

1. Copy the contents of blog.html and paste it into
index.php in your theme folder.

2. Next copy the contents of style.css and paste it into
style.css in your theme folder (below the comment
header we added earlier)

3. Finally copy over the images directory into your
theme folder

If you now test your theme you should see a mangled version of
the blog.html page. Note that all our image URLs have broken
because they were Relative URLs, and all our styles have vanished
because the CSS file is also linked with a Relative URL.

So our process from here on is basically to work top down and fix
each section in turn with the appropriate bits of WordPress code.

Updating	<head>	for	WordPress

The <head> section of WordPress themes includes a lot of
important information, not only the regular HTML title tag, links
to the stylesheet and so on, but also a few special WordPress
instructions to set up RSS feeds, provide plugins with space to add
their own code and a pingback URL.

Building	a	Basic	Theme:	Creatif	Blog1�8

In this section, you can assume that any code we cover is meant to
be placed within the <head></head> part of the index.php file.

Currently our code looks like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

 <meta http-equiv=”Content-Type” content=”text/html;

charset=UTF-8” />

 <title>Creatif</title>

 <link href=”style.css” rel=”stylesheet” type=”text/css”

/>

 <link rel=”shortcut icon” href=”images/favicon.ico” />

</head>

Page	Information

So we’ll begin with the Doctype. Defining the Doctype is important
because it tells the browser how to process the HTML. Our
Doctype is fine so we’ll ignore it.

Next there’s the meta information provided for the browser and
robots processing this page. We’ll change that to:

<meta http-equiv=”Content-Type” content=”<?php

bloginfo(’html_type’); ?>; charset=<?php

bloginfo(’charset’); ?>” />

<meta name=”generator” content=”WordPress <?php

bloginfo(’version’); ?>” />

There’s the handy bloginfo template tag appearing three times over,
with parameters html_type, charset and version respectively.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

Building	a	Basic	Theme:	Creatif	Blog1�9

The	Page	Title

Next we have our <title></title> tag, currently it just says
‘’Creatif”, but this should change when the reader visits different
pages, right? Not only will it make bookmarking and reading more
meaningful, but it will also help the blog get indexed well in
search engines.

There are a variety of ways to format your site titles, in our example
we’re just going have each page print out the page’s title followed
by the blog’s name. This name is defined in the Dashboard by the
user under Settings > General.

The code we need is:

<title><?php bloginfo(‘name’); ?><?php wp_title();

?></title>

Once again we’ve used bloginfo this time to grab the blog’s name,
and coupled it with a template tag that outputs the page’s title. The
wp_title tag will display the name of the Post if viewing a single
Post, the name of the category if viewing by category, the searched
term if showing the results of a search, and so on. It’s very versatile,
and very handy!

Stylesheets	and	RSS

Next comes the URL to our stylesheet. As we discussed previously
this Relative URL doesn’t work given the different virtual locations
this code will be accessed by. So we’ll swap it out for another
variant of the very useful bloginfo tag that provides the URL for
the default stylesheet:

<link rel=”stylesheet” href=”<?php bloginfo(’stylesheet_

url’); ?>” type=”text/css” media=”screen” />

Building	a	Basic	Theme:	Creatif	Blog150

Since we want our blog to have an RSS feed, we’re going to need
to define the URL and information for it. Once again, the fantastic
bloginfo has the information needed to link the page to the URL
of our feed:

<link rel=”alternate” type=”application/rss+xml” title=”RSS

2.0” href=”<?php bloginfo(’rss2_url’); ?>” />

This is important in browsers such as Safari that have RSS
readers built in – it provides, in their URL bar a small RSS icon
appears allowing the user to quickly hook the RSS feed into their
reader preferences.

Trackbacks

Pingbacks (or trackbacks or linkbacks as they are sometimes
called) are important in creating connections in the blogging
world. Pingbacks allow the author to know when another site has
mentioned the URL of any page within your blog. Here’s the code
we need to make this happen:

<link rel=”pingback” href=”<?php bloginfo(’pingback_url’);

?>” />

Favicon	Image

Like our stylesheet, our favicon image is being referenced with
a Relative URL, so to get it showing we need to update with an
Absolute URL as follows:

<link rel=”shortcut icon” href=”<?php bloginfo(’template_

directory’); ?>/images/favicon.ico” />

Building	a	Basic	Theme:	Creatif	Blog151

Leaving	Space	for	Plugins

The final piece of code we’ll add is a vital part of any
WordPress theme:

<?php wp_head(); ?>

When your theme is processed for viewing, WordPress replaces
this tag with any extra code needed to run plugins that the user has
setup. So if you install a plugin that for example needs to run some
Javascript – as many do – when you open the site in a browser and
check the source code you will see the tag has been replaced by
a set of script includes. Similarly some plugins will add CSS code,
extra HTML, meta tags or other snippets of code. If wp_head is
not present your theme will simply not be compatible with many
common WordPress plugins.

The	<head>	Code

So here is our complete <head></head> section

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>

 <meta http-equiv=”Content-Type” content=”<?php

bloginfo(‘html_type’); ?>; charset=<?php

bloginfo(‘charset’); ?>” />

 <meta name=”generator” content=”WordPress <?php

bloginfo(‘version’); ?>” />

 <title><?php bloginfo(‘name’); ?><?php wp_title(); ?>

</title>

 <link rel=”stylesheet” href=”<?php bloginfo(‘stylesheet_

url’); ?>” type=”text/css” media=”screen” />

 <link rel=”alternate” type=”application/rss+xml”

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

Building	a	Basic	Theme:	Creatif	Blog152
title=”RSS 2.0” href=”<?php bloginfo(‘rss2_url’); ?>” />

 <link rel=”pingback” href=”<?php bloginfo(‘pingback

url’); ?>” />

 <?php wp_head(); ?>

 <link rel=”shortcut icon” href=”<?php

bloginfo(‘template_directory’); ?>/images/favicon.ico” />

</head>

Image	URLs

With the <head> section all set to go, we’ll next quickly go through
and fix all our broken image links. As we discussed earlier, these
need to be migrated from their current Relative URLs to Absolute
URLs like this:

<img src=”<?php bloginfo(‘template_directory’); ?>/images/

sample.jpg” alt=”Example Image!” />

The fastest way to make this change is to use your text editor to
run a Find + Replace on your code. Simply search for the string:

src=”/images/

And replace all instances with:

src=”<?php bloginfo(‘template_directory’); ?>/images/

With that change and the fix to your stylesheet include, your theme
should be looking almost identical to the original blog.html. You
can test your theme at any time by loading the latest version of the
theme folder into wp-content/themes on your WordPress server
and (assuming the theme has already been activated) refreshing
your site.

Building	a	Basic	Theme:	Creatif	Blog15�

Dynamic	Navigation	and		
Adding	Pages

The next part after the <head> section that needs some fixing up is
the navigation. At the moment it’s static and leads to nothing. Here
we will use another Template Tag to list all Pages present.

Simply take out all the ’s within the <ul id=”menu”>, and
replace the code with this:

<ul id=”menu”>

<a href=”<?php bloginfo(’url’); ?>” title=”Home”>Home</

a>

<?php wp_list_pages(’title_li=’); ?>

So there are two parts to this code. The first just links back
home – a necessity for all websites really. The second line, however
is the real magic. The template tag wp_list_pages does exactly
that – lists all the pages, only we have some power over how they
are displayed.

Here we pass a value for the title_li attribute, saying that
it’s going to be blank. This is written as: ‘title_li=’ and tells
WordPress that we want to modify it’s default output – which is to
place a title wrapped in ’s before listing all the pages
(which we don’t want).

Like most Template Tags, there are loads of parameters one can
use. To add values for additional parameters you simple separate
as many as you wish with an & character. For our needs though,
one is sufficient. View the Codex reference for wp_list_pages at:
http://codex.wordpress.org/Template_Tags/wp_list_pages

http://codex.wordpress.org/Template_Tags/wp_list_pages

Building	a	Basic	Theme:	Creatif	Blog15�

If we now test the theme you’ll see that only ‘Home’ and ‘About’ are
showing up, what’s with that? That’s because you don’t have any
Pages added on your site! Open up the WordPress Dashboard, and
select Pages > Add New, add a title, fill in some dummy content,
click publish and if you flip back to your site that page will now
magically appear in your navigation. Say hello to the power of a
dynamically managed site!

Note that instead of using wp_list_pages, it is actually possible to
simply place static links by getting the Permalink for each page and
manually coding them in, like this for example:

<a href=”http://example.com/about/”

title=”about”>About

However you should generally only do this if the theme is for
personal use as you have no control over whether other blog users
will create pages with the exact same link structure, and your
theme may end up with broken links in the navigation.

Creating	a	Featured	Post	with		
WP_Query

Working down again, we now come to our Featured Post block.
You’re about to come into contact with WordPress’ famous loop –
and some additional customising using a very handy piece of
WordPress code called WP_Query.

http://example.com/about/

Building	a	Basic	Theme:	Creatif	Blog155

So, what we’re going to do is get rid of everything between the
initial <div class=”block_inside”> to the </div> just below the
Read More button, and replace the code with this:

<div class=”block_inside”>

 <?php

 $featured = new WP_Query();

 $featured->query(‘showposts=1’);

 while($featured->have_posts()) : $featured->the_

post();

 $wp_query->in_the_loop = true;

 $featured_ID = $post->ID;

 ?>

 <?php if (get_post_meta($post->ID, ‘large_preview’,

true)) { ?>

Fig 5-3 – The featured post section.

Building	a	Basic	Theme:	Creatif	Blog156
 <div class=”image_block”>

 <img src=”<?php echo get_post_meta($post-

>ID, ‘large_preview’, true); ?>” alt=”Featured Post” />

 </div>

 <?php } ?>

 <div class=”text_block”>

 <h2><a href=”<?php the_permalink(); ?>”

title=”<?php the_title(); ?>”><?php the_title(); ?></

h2>

 <small>on <?php the_time(‘M d’); ?> in <?php

the_category(‘, ‘); ?> tagged <?php the_tags(‘’); ?> by

<?php the_author_posts_link(); ?></small>

 <?php the_content(‘Read More’); ?>

 </div>

 <?php endwhile; ?>

</div>

“Whoah”, you say. What on EARTH is this?

Basically what we’ve written here is a custom query. Because
WordPress generally just runs one big loop through the codebase,
and we want one special featured post, we need to query the
database for that first post to feature. Later we’ll use the regular
WordPress loop (i.e. The Loop) to show the rest of the posts on
the page.

Featured posts are actually quite an advanced bit of theming, so
as you read through the explanation below, don’t stress if it’s not
100% clear. There are a few advanced PHP concepts used in that
bit of code, and for the most part you can just copy and paste it
without really needing to understand too deeply. Later as you go
through other parts of the book we’ll come back to the methods
used here and things will all fit into place!

Building	a	Basic	Theme:	Creatif	Blog157

So let’s go through line by line:

1. The first PHP line tells WordPress that we’re going
to run a new WordPress Query. This line is creating
a PHP object. An object is like a regular variable on
steroids, it can do lots of things like hold variables
inside it, execute special functions (called methods)
and even have other objects derived from it. But don’t
worry, object-oriented programming is not what we’re
interested in here! The main thing you need to know
is that an object is a sort of container of data and
functions, that has been defined somewhere else for us
to make use of here.

So we’re calling our object $featured. We create it by
running a special method called a constructor, written
as new WP_Query(). After that line is called we can
then use the $featured object to do its various bits
of cleverness!

2. In the next line of PHP we run one of $featured’s
methods called query(). Methods are just like regular
functions – just like those Template Tags we’ve been
using all this time. The difference is that a method is
specially attached to an object. So here the object is
$featured and whenever you run the query() method,
it does stuff to the data held inside $featured. In this
case it queries the database and stores the results in
our object.

So the query() method like many of the Template Tags
we’ve used can take parameters. In this case we’ll give
a value for the parameter showposts=1. Unsurprisingly
this parameter tells the query to only get 1 post.

Building	a	Basic	Theme:	Creatif	Blog158

There are many different parameters, and like Template
Tags such as wp_list_pages, these parameters can be
separated by an &. You can view a full list of parameters
on the query_posts codex page: http://codex.
WordPress.org/Template_Tags/query_posts.

3. The next line begins a while loop. As you know a while
loop executes a block of code over and over again
while a certain condition is true. So here the code:

while($featured->have_posts()) ... endwhile;

will execute everything in between as long as
have_posts() – another method on the $featured
object – returns true.

As you will see in between these two bits of code
we have our HTML with some WordPress Template
Tags outputting the Post title, content and associated
information like tags and date posted.

Now because earlier when we ran the query()
method and we specified it to only grab one post,
this while loop is only going to execute one time.
So strictly speaking we don’t actually need a while
loop. However it’s a useful code snippet because
sometimes you might want to feature more than one
post, in which case you simply change the value of
query(’showposts=1’) to query(’showposts=2’)
or more!

4. Below that we have a line of code that reads:

$wp_query->in_the_loop = true;

http://codex.wordpress.org/Template_Tags/query_posts
http://codex.wordpress.org/Template_Tags/query_posts

Building	a	Basic	Theme:	Creatif	Blog159

This line is actually to clear up a small issue that arises
when using WP_Query. Namely that the Template Tag
the_tags(‘’) won’t work without this being here. You
can safely ignore this line as being an oddity that just
needs to appear here.

5. The next line is:

$featured_ID = $post->ID;

This line creates a variable called $featured_ID and
gives it the value of the Post’s ID number. Later on
when we are showing all the rest of the Posts on the
page we’ll check them against this ID number to make
sure we don’t print this same Post out again.

You might have guessed from the syntax used that
$post is an object. It’s a different object type to the
WP_Query object we created earlier. In this case the
$post object contains lots of information about the
Post in variables like ID which can be referenced with
the -> notation. For the most part though we’ll use
Template Tags like the_title and the_time to extract
that information because they are a bit simpler to use.

6. The next four lines check if there’s a featured post
image and show it if it’s there. They use those Custom
Fields we setup earlier to store the image URL. We’ll
cover Custom Fields in detail in the next Chapter.

7. Finally we have the post heading, text and information.
To fit with the HTML we have, we need to display the
title wrapped in a link to the actual page. Then display
some meta information wrapped in a <small> tag in the
format of: ‘on Month, Day in category, category tagged
tag, tag, tag’.

Building	a	Basic	Theme:	Creatif	Blog160

The reason the_time is used, and not the similar
template tag: the_date is because the latter only
shows the date once per day – if you posted numerous
times a day, only the most recent would show the date.
Finally, we have the content with the text of the read
more link.

And with that we have a featured post. Between the WP_Query
and the use of a Custom Field, this is some of the most advanced
code you’ll ever need to use, so don’t worry if that seemed a little
complex, we’re just throwing you in the deep end!

All you really need to understand is that we’re asking the database
for some information, telling it we only want one Post, and then
while we have that Post outputting all the relevant details of it into
our specially formatted HTML.

Showing	the	Rest	of	the	Posts

With the featured Post sorted, next we need the rest of the blog’s
posts to be displayed in the main content area. We do this in a
similar way to the previous bit of code, except this time we don’t
need to create a special query, we can use WordPress’ default
query and loop over it – this is commonly known as The Loop –
which we discussed in Chapter 4.

So moving down the page from the featured Post, replace
everything within the <div class=”block_inside”> with
this code:

<?php if(have_posts()) : while(have_posts()) : the_post(); ?>

 <? if ($post->ID != $featured_ID) { ?>

 <h2><a href=”<?php the_permalink(); ?>”

title=”<?php the_title(); ?>”><?php the_title(); ?></h2>

 <small>on <?php the_time(‘M d’); ?> in <?php the_

Building	a	Basic	Theme:	Creatif	Blog161
category(‘, ‘); ?> tagged <?php the_tags(‘’); ?> by <?php

the_author_posts_link(); ?></small>

 <?php the_content(‘Read More’); ?>

 <div class=”separator biggap”></div>

 <? } ?>

<?php endwhile ?>

 <div id=”posts_navigation”>

 <?php previous_posts_link(); ?>

 <?php next_posts_link(); ?>

 </div>

<?php else : ?>

 <h2 class=”center”>Not Found</h2>

 <p class=”center”>Sorry, but you are looking for

something that isn’t here.</p>

 <?php include (TEMPLATEPATH . ‘/searchform.php’); ?>

<?php endif; ?>

This code is basically The Loop that we looked in Chapter 4. As
you’ll see we have two bits of PHP in quick succession in the first
line. First we run a quick if() statement to see if we even have
any Posts, after all there is no point executing all that code if there
wasn’t any!

So everything between:

if(have_posts()):

and

else:

is executed only if have_posts() returns true – i.e. there are some
Posts to show. Otherwise we show a short message saying there
are no Posts found.

Building	a	Basic	Theme:	Creatif	Blog162

The second bit of code that comes right after the if statement is
a while loop. As we’ve discussed before, a while loop executes
everything in between the while and the endwhile, so long as the
condition is true (the condition again being have_posts()).

Now in the featured Post part of the code we had to actually query
the database to get some Posts for our while loop to go through.
That was all that WP_Query() code, remember? But this time we
will take advantage of the fact that every WordPress page executes
one default query and so we can simply loop over it using the
loop code without bothering to create that special object we did
previously. This is commonly termed as The Loop.

So for every post we go through and output the Post title, the
date it was created, the tags it has, the author, an excerpt, and a
separator <div> element.

Note however that we’ve wrapped this output code in a big if
statement like this:

<? if ($post->ID != $featured_ID) { ?>

...

<? } ?>

This statement checks if the current post’s ID matches the featured
Post’s ID that we stored earlier. The ! = mark means not equal.
So in plain English we’re saying if the Post’s ID doesn’t match the
featured Post’s ID, then do everything in between. That way we
don’t reprint the same featured Post again.

The number of Posts outputted by The Loop is actually set inside
WordPress’ Dashboard under Settings > Reading. Depending on
how many posts you have to show, you may need buttons at the
end to show the previous or next set of posts. For that we have
this code:

Building	a	Basic	Theme:	Creatif	Blog16�
<div id=”posts_navigation”>

 <?php previous_posts_link(); ?>

 <?php next_posts_link(); ?>

</div>

These links only appear if they need to. So if there are no more
Posts to go to, or no more Posts that haven’t already been shown
on a previous page, then the respective links won’t display.

Building	the	Sidebar

With the main Posts appearing, it’s time now to look at our sidebar.
Sidebars in WordPress themes can contain a variety of different
elements and are an important part of a blog theme.

Fig 5-4 – Sidebars are an important part of any blog theme.

Building	a	Basic	Theme:	Creatif	Blog16�

At the moment, the sidebar simply consists of a <div
class=”block_inside”> within the wrapping sidebar <div>. So
get rid of everything within the inside block, and create a new
unordered list:

An unordered list is the best way to organise a sidebar, we simply
make each part of the sidebar into a list item, those parts containing
their own child unordered lists for their respective information.

Search

For sites containing more than a few pages, it is a good idea
to include a search tool. WordPress comes with built-in search
functionality that is surprisingly easy to implement. All you need is a
simple search form.

Because the search form is likely to appear in multiple places – the
sidebar, the archives, the 404 and so on – it’s a good idea to create
a separate PHP file containing the code and then using an PHP
Include to place it wherever required.

So create a new file called searchform.php inside the theme
directory. Inside this file, place the following code to create our form:

<form method=”get” id=”searchform” action=”<?php

bloginfo(’url’); ?>/”>

<p>

<input type=”text” value=”<?php echo wp_specialchars($s,

1); ?>” name=”s” id=”s” size=”15” />

<input type=”submit” id=”search_submit” value=”Search” />

</p>

</form>

Building	a	Basic	Theme:	Creatif	Blog165

In the <form> tag we have defined two important things. The first is
that the form will post its results via the get method. In other words
the variables the person types in will be passed as a URL. The
second is that the action for where the form is to go, is set as the
blog’s main URL. Also note that in the text input field, the id is the
letter ‘s’.

Put this together and you’ll find that if a person were to type in
‘search_word’ into the field, the browser would be directed to
this URL:

http://www.example.com/?s=search_word

WordPress processes this type of URL as a search query. From the
file hierarchy in Chapter 4, we know that it will first attempt to show
the file search.php, then since that file isn’t present, it will fall back
and show index.php.

Finally note that the <input> field has a value set to:

<?php echo wp_specialchars($s, 1); ?>

In PHP the word echo simply means to print out the following
statement onto the page. That statement is a function to strip
out any special characters from the variable it is passed – in this
case $s, which has a value only if a search query has just been
executed, in which case it will display the previously searched term.

Including the search form in the sidebar

With our search form file created, we now only need to include it in
our sidebar. Remember each widget in the sidebar is to be wrapped
in an element, so to include the search form we need
this code:

Building	a	Basic	Theme:	Creatif	Blog166
<li id=”search” class=”widget”><h3>Search</h3>

 <?php include(TEMPLATEPATH.’/searchform.

php’); ?>

You will recall the middle line is a PHP Include, discussed in
Chapter 4.

RSS	and	FeedBurner

RSS or Really Simple Syndication is a way to package the site’s
content for use elsewhere. People generally use RSS feeds in RSS
readers to stay up to date with a site. However they may also use
the feed to syndicate content onto another website or application.

An RSS feed is basically just a specially formatted text file that
is updated to contain the latest content wrapped in some XML tags
to standardize the information. WordPress has a built-in system
for producing RSS feeds for both recent Posts and comments
on Posts.

Although WordPress comes equipped with the basics of what
we need, your RSS feeds are more powerful with the addition
of Google Feedburner which can make your RSS feed more
compatible, provide statistics and add special formatting and
advertising. Additionally FeedBurner can repackage a feed as email
updates for those users not up to speed with RSS.

In this section we’ll discuss how to push your feed through
FeedBurner, add email subscriptions and create an icon to display
the number of readers.

Building	a	Basic	Theme:	Creatif	Blog167

Burning your RSS Feed

First up, you’re going to need to register your RSS Feed with
FeedBurner. There are two ways to find your feed. If you have
permalinks switched on you can use this URL:

http://example.com/feed/

Or without permalinks, your feed URL will look like:

http://example.com/?feed=rss2

Now that you have your Feed URL, you can now head over to
http://www.feedburner.com/, and register. Once completing the
short registration, you “burn” your feed. During the process, you
can select a couple of extra options to monitor your feed by; such
as clicks, downloads of enclosed files, and so on.

Visit your feed by clicking on My Feeds, and visiting your feed (click
the tiny RSS icon next to its name)! Great, you can now select the
URL of your feed at FeedBurner.

Creating Email Subscriptions

What you really want to focus on is the options you’re now shown.
Most importantly, Publicize. You’re given a wide range of ways to
publicize your feed, including email subscriptions.

So back in our index.php, another widget needs to be created to
accommodate the RSS and Email Subscription links. Just as we
did with the Search widget, create a new element in the
sidebar and inside it we’ll place another unordered list, like this:

http://example.com/?feed=rss2
http://www.feedburner.com/fb/a/home

Building	a	Basic	Theme:	Creatif	Blog168
<li id=”subscribe” class=”widget”><h3>Subscribe</h3>

You can now fill the first with a link to the FeedBurner URL
you just created. As for the second list item, it will require a special
link – the Email Subscription link. Go back to your FeedBurner
Dashboard, where you were looking at the page Publicize and
select Email Subscriptions. Select this, and activate it. Select your
desired language, and copy all the code provided in the second
text box, titled Subscription Link Code.

Create another , this time paste the code from the text box
on FeedBurner. Feel free to change the text value between the <a>
tags, from ‘Email Updates’ to whatever you wish. Your code
should now look something like this:

<li id=”subscribe” class=”widget”><h3>Subscribe</h3>

 <a href=”http://feeds.feedburner.com/

yourFeed”>RSS Feed

 <a href=”http://www.feedburner.com/fb/a/emai

lverifySubmit?feedId=1234567&loc=en_US”>Email Updates</

a>

Adding a Subscription Count

Finally, we want to add a Subscription Counter to show off how
many subscribers we have. So head back to FeedBurner, once
again to the Publicize page, this time go to FeedCount. Activate the
feed count, then select some colours of your preference. To fit with

http://www.feedburner.com/fb/a/emailverifySubmit?feedId=2264130&loc=en_US
http://www.feedburner.com/fb/a/emailverifySubmit?feedId=2264130&loc=en_US

Building	a	Basic	Theme:	Creatif	Blog169

the Creatif theme, I’d suggest using #7f7d78 as the body colour,
and #eeeeee as the text colour.

You’ll be given some code that looks like this:

<p><img

src=”http://feeds.feedburner.com/~fc/CreatifBlog?bg=7f

7d78&fg=eeeeee&anim=0” height=”26” width=”88”

style=”border:0” alt=”” /></p>

As you’ve probably guessed, we now type in a new , and place
this code within it.

Updating or Redirecting the Feed URL in <head>

Now currently the feed URL in our <head> area is still the main
WordPress feed URL. Remember it’s using this code:

<link rel=”alternate” type=”application/rss+xml” title=”RSS

2.0” href=”<?php bloginfo(’rss2_url’); ?>” />

This feed still works, and can be accessed through a browser
address bar, but it means that FeedBurner’s statistics won’t be
tracking people using this URL. You could just change the value
of href and hardcode in your new FeedBurner URL, but a more
elegant solution is to use the FeedSmith plugin to redirect your
feed. You can grab this from: http://www.google.com/support/
feedburner/bin/answer.py?answer=78483

Doing More with Subscriptions

As you can see, it is relatively quick to integrate FeedBurner to your
WordPress blog. It provides a simple and easy way to give readers
options to subscribe to your blog and read content regularly,
without causing them a fuss!

http://feeds.feedburner.com/CreatifBlog
http://feeds.feedburner.com/~fc/CreatifBlog?bg=7f7d78&fg=eeeeee&anim=0
http://feeds.feedburner.com/~fc/CreatifBlog?bg=7f7d78&fg=eeeeee&anim=0
http://www.google.com/support/feedburner/bin/answer.py?answer=78483
http://www.google.com/support/feedburner/bin/answer.py?answer=78483

Building	a	Basic	Theme:	Creatif	Blog170

To view stats for your feed, you can click on the Analyze tab,
and it will show you a range of information that is picked up
by FeedBurner. This is great in figuring out how many people
subscribe, how many people visit your site, and so on.

Recent	Posts

Although recent Posts are always going to be displayed in the
main content area, it can be handy to have a short list of their titles
in the sidebar. Using WP_Query again, we’ll now create a widget
that displays a list of a number of recent Posts, however many you
wish. For our example we’ll show the most recent seven. Here’s
the code:

<li id=”recent_posts” class=”widget”><h3>Recent Posts</h3>

 <?php

 $recent = new WP_Query();

 $recent -> query(‘showposts=7’);

 while($recent -> have_posts()) : $recent ->

the_post();

 ?>

 <a href=”<?php the_permalink(); ?>”

title=”<?php the_title(); ?>”><?php the_title(); ?></

li>

 <?php endwhile; ?>

So you’ll notice that this is a very similar loop to the one used to
grab the featured Post earlier. The only difference is that we’ve set
the query to grab 7 Posts instead of 1. We’ve then avoided showing
the content of each Post and just printed a linked title. If you
wished you could easily add a small segment of the Post, or almost
any other detail of the Posts.

Building	a	Basic	Theme:	Creatif	Blog171

Using WP_Query is a very flexible method of getting recent
Posts. An alternative method is to use the Template Tag wp_get_
archives(), a tag usually used to get monthly archives (see
below). By passing some alternative parameters we can grab the
most recent post titles instead.

Here’s the code:

<li id=”recent_posts” class=”widget”>

 <?php wp_get_archives(‘type=postbypost&limit=7’);

?>

Monthly	Archives

Date based archives show the reader a list of dates and allow the
reader to click through and see all Posts from those dates. You can
choose whether to display monthly, weekly, daily or yearly archives.
Like most blogs, we’re going to use monthly.

The Template Tag used here will again be wp_get_archives().
Two parameters need to be set – ‘type’ and ‘limit’. We want to show
by the month and a maximum of seven:

<li id=”archives” class=”widget”><h3>Archives</h3>

 <?php wp_get_archives(‘type=monthly&limit=7’); ?>

This will simply display an unordered list of the seven more recent
months – displayed as ‘December 2008’. Later we’ll look further
in depth at archives, we’re only scratching the surface with this
little beauty!

Codex Page for wp_get_archives: http://codex.wordpress.org/
Template_Tags/wp_get_archives

http://codex.wordpress.org/Template_Tags/wp_get_archives
http://codex.wordpress.org/Template_Tags/wp_get_archives

Building	a	Basic	Theme:	Creatif	Blog172

Categories

Another common way to browse older content is via Post
categories. Like archives, categories have a very simple Template
Tag used to call for them: wp_list_categories(). It works a
little differently to archives however, and is much more similar to
wp_list_pages, in the sense we need to rid of the <h2> title it
generates by default:

<li id=”categories” class=”widget”><h3>Categories</h3>

 <?php wp_list_categories(‘title_

li=&orderby=name’); ?>

The title is hidden, and they are ordered in alphabetical order! There
are more parameters to control whether you want to exclude a
certain category, show the number of Posts and other behavior.

Codex Page for wp_list_categories: http://codex.wordpress.
org/Template_Tags/wp_list_categories

Completed	Sidebar

Our sidebar is now completely customized. You could leave your
sidebar this way, completely hard-coded, however in the next
section we’ll turn the sidebar into a widgetized sidebar – more
appropriate for public release.

Widgetizing	the	Sidebar

Widgetization is a concept integrated into WordPress 2.3 and
basically is a way of making the sidebar editable in WordPress’

http://codex.wordpress.org/Template_Tags/wp_list_categories
http://codex.wordpress.org/Template_Tags/wp_list_categories

Building	a	Basic	Theme:	Creatif	Blog17�

dashboard. Creating a widgetized sidebar is not difficult, and is
great when releasing your theme to a public who may not be very
code savvy. It means they can then add widgets, rearrange the
order and change some options all from WP-Admin. A widgetized
theme presents an extra option in the Appearance tab labelled
Widgets. From this page the user can add, edit, rearrange or simply
remove widgets.

Widgetizing a sidebar requires a special function, so you must first
create a new file and call it functions.php. Inside this file, paste
the following code:

<?php

 if(function_exists(’register_sidebar’)){

 register_sidebar(array(’name’ => ‘Creatif’));

 }

?>

Fig 5-5 – Widgets enable the user to easily change sidebar content.

Building	a	Basic	Theme:	Creatif	Blog17�

That’s it. It’s important to re-name the sidebar within the array
above, so that in the admin area you can select your specific
sidebar to edit.

Next we need to edit the index.php file to check if a dynamic
sidebar exists. If it does then WordPress will swap it in here and if
not it will simply display everything in between the if statement.

<?php if (!function_exists(‘dynamic_sidebar’) ||

!dynamic_sidebar()) : ?>

... old sidebar code

<?php endif; ?>

If you have some fixed, hardcoded elements – for example the
FeedBurner widget, you would leave those in above or below the
widgetized code and they will always display.

Note: Dynamic Sidebar headers use <h2>’s not <h3>’s, so you may
need to change some CSS to accommodate the widgets.

So our final sidebar code looks like this:

<div id=”sidebar”>

 <img src=”<?php bloginfo(‘template_directory’); ?>/

images/ribbon_browse.png” class=”ribbon” alt=”Featured

Project”/>

 <div class=”block_inside”>

 <li id=”search” class=”widget”><h3>Search</h3>

 <?php include(TEMPLATEPATH.’/searchform.

php’); ?>

 <li id=”subscribe” class=”widget”><h3>Subscribe</h3>

 <a href=”<?php bloginfo(‘rss2_

Building	a	Basic	Theme:	Creatif	Blog175
url’); ?>”>RSS Feed

 <a href=”http://feedburner.google.

com/fb/a/mailverify?uri=psdtuts”>Email Updates

 <a href=”http://feeds.feedburner.

com/psdtuts”><img style=”border:0” src=”http://feeds.

feedburner.com/~fc/psdtuts?bg=a6a2a0&fg=ffffff&anim=0”

alt=”” width=”88” height=”26” />

 <li id=”search” class=”widget”><h3>Switch

Colours</h3>

 <ul id=”color_switch”>

 <li id=”switch_light”><a>Light</

a>

 <li id=”switch_dark”><a>Dark

 <?php if (!function_exists(‘dynamic_sidebar’)

|| !dynamic_sidebar()) : ?>

 <li id=”recent_posts” class=”widget”><h3>

Recent Posts</h3>

 <?php

 $recent = new WP_Query();

 $recent ->

query(‘showposts=7’);

 while($recent -> have_posts())

: $recent -> the_post();

 ?>

 <a href=”<?php the_

permalink(); ?>” title=”<?php the_title(); ?>”><?php the_

title(); ?>

 <?php endwhile; ?>

 <li id=”archives” class=”widget”><h3>Archives

http://feedburner.google.com/fb/a/mailverify?uri=psdtuts
http://feedburner.google.com/fb/a/mailverify?uri=psdtuts
http://feeds.feedburner.com/psdtuts
http://feeds.feedburner.com/psdtuts
http://feeds.feedburner.com/~fc/psdtuts?bg=a6a2a0&fg=ffffff&anim=0
http://feeds.feedburner.com/~fc/psdtuts?bg=a6a2a0&fg=ffffff&anim=0

Building	a	Basic	Theme:	Creatif	Blog176
</h3>

 <?php wp_get_archives(‘type=monthly

&limit=7’); ?>

 <li id=”categories” class=”widget”><h3>

Categories</h3>

 <?php wp_list_categories(‘title_

li=&orderby=name’); ?>

 <?php endif; ?>

 </div>

 </div>

You can learn more about widgetizing themes including how to
specify your own custom versions of widgets here: http://codex.
wordpress.org/Widgetizing_Themes

The	Footer

With the sidebar sorted, it’s time to work on the footer. The sidebar
has a text blurb, normally you would just leave this written in the
HTML, however instead we’re going to move the text into a text file
called about.txt and then include it with this line:

<?php include(TEMPLATEPATH.’/about.txt’); ?>

As you can see PHP Includes can be used to include other types of
files, not just PHP ones.

Next there are some links to be shown – but who wants to edit
the index.php every single time you partner up with a new site?
Instead we’ll use WordPress’ Blogroll functionality.

http://codex.wordpress.org/Widgetizing_Themes
http://codex.wordpress.org/Widgetizing_Themes

Building	a	Basic	Theme:	Creatif	Blog177

The blogroll is a set of links and link categories set up in
WordPress’ dashboard. To display them in the footer, replace the
links code with:

 <?php wp_list_bookmarks(’title_li=&categorize=0’); ?>

This is a similar Template Tag to wp_list_pages which we used
in the menu, in the sense that we need to get rid of the title_li
however there is an additional categorize=0 option needed.
Without these two settings, WordPress will output a <h2> heading
and wrap the list in elements.

In the last column, there are a few RSS links. Head back up the
page to your manual sidebar, or go back to your FeedBurner page
and grab the URL of your feed to replace those.

Lastly we need to add another hook for WordPress’ plugin API. As
you recall in the header we added the wp_header() function, here
just before the end of the HTML we add:

<?php wp_footer(); ?>

So our final footer code look like this:

 <div id=”footer”>

 <div class=”container”>

 <div class=”footer_column long”>

 <h3>About Rockable Press</h3>

 <?php include(TEMPLATEPATH.’/about.txt’); ?>

 </div>

 <div class=”footer_column”>

 <h3>More Links</h3>

Building	a	Basic	Theme:	Creatif	Blog178
 <?php wp_list_bookmarks(‘title_

li=&categorize=0’); ?>

 </div>

 <div class=”footer_column”>

 <h3>RSS</h3>

 <a href=”<?php bloginfo(‘rss2_

url’); ?>”>RSS Feed

 <a href=”http://whatisrss.

com”>What is RSS?

 </div>

 </div>

 </div>

<?php wp_footer(); ?>

</body>

</html>

Splitting	the	Page	Up

So at this point, our theme is working, at least the homepage
is. The next step is to start to make all the other pages – search
results, archives, single Posts, Pages and so on. But before we do
that, it’s time to do a little housekeeping.

Currently we have one major file – index.php, and some
auxiliaries – about.txt, style.css, searchform.php. If we were
to start making pages like those mentioned above, we would need
to create a lot of duplication between index.php and the new files.
Namely the header, sidebar and footer will usually remain exactly
the same no matter what page is displaying.

So instead we are going to create three new files:

http://whatisrss.com
http://whatisrss.com

Building	a	Basic	Theme:	Creatif	Blog179

1. header.php – Contains everything up to the end of the
<div id=”header”></div>

2. sidebar.php – Contains all the code shown at the end
of the sidebar section

3. footer.php – Contains all the code shown at the end of
the footer section

Back in index.php, we replace the code we’ve removed with these
three lines of code (placed respectively where each piece of code
has been removed)

<?php get_header(); ?>

<?php get_sidebar(); ?>

<?php get_footer(); ?>

As you recall from Chapter 4, these are three include functions
provided by WordPress for including the three most common files.
They work in exactly the same way as the usual PHP Includes we
used for the search form and about text.

Header.php, sidebar.php and footer.php are essential to any
reasonably complex theme – if you don’t create these, altering
the smallest detail in the footer of your site can be much more
troublesome as you have to trawl through all your template files to
make sure you haven’t missed any instances. With our universal
header, sidebar and footer, changing anything is simply a matter of
hitting a single file each time.

Featuredpost.php

This methodology of moving code segments into sub template files
is also good practice for making your theme neat and tidy. So next

Building	a	Basic	Theme:	Creatif	Blog180

we’ll create a new file – featuredpost.php – and paste in all the
code inside <div id=”block_featuredblog”>.

We then replace the cut code with:

<?php if(is_home()){ include(TEMPLATEPATH.’/featuredpost.

php’); } ?>

As you recall from Chapter 4, the first part is a Conditional Tag
that checks to see if the page currently being displayed is the
homepage. If it is, then we display our featured Post, if not, we skip
right on past.

Creating	the	Single	Post	and		
Single	Page

In Chapter 4 we looked at the file hierarchy and how WordPress
will always check to see if certain files are available in the theme
directory to decide what to serve up in any given scenario. In
particular if a reader visits a single post page:

Single Post Example – www.example.com/post_title

single.php > index.php

So next we’ll create a single.php file that will be shown instead
of the index. In our new file we can add things that are specific to
viewing a single Post, in particular we will later add comments!

First create a file called single.php and copy in the contents of
index.php. Since we don’t need featured Posts, we can remove
the include line. Next we currently have:

<?php the_content(’Read More’); ?>

Building	a	Basic	Theme:	Creatif	Blog181

But we don’t need a Read More link, so we can replace this
line with:

<?php the_content(); ?>

Code	for	a	Single	Post

So the full code of single.php is:

<?php get_header(); ?>

 <div id=”block_content”>

 <div id=”content_area” class=”block”>

 <div class=”block_inside”>

 <?php if(have_posts()) : while(have_

posts()) : the_post(); ?>

 <h2><a href=”<?php the_permalink();

?>” title=”<?php the_title(); ?>”><?php the_title(); ?></h2>

 <small>on <?php the_time(‘M d’); ?>

in <?php the_category(‘, ‘); ?> tagged <?php the_tags(‘’);

?> by <?php the_author_posts_link(); ?></small>

 <?php the_content(); ?>

 <?php endwhile; ?>

 <?php else: ?>

 <p>There are no

posts to display. Try searching:</p>

 <?php include(TEMPLATEPATH.’/

searchform.php’); ?>

 <?php endif; ?>

 </div>

 </div>

 <?php get_sidebar(); ?>

 <div style=”clear:both”></div>

 </div>

 </div>

 </div>

<?php get_footer(); ?>

Building	a	Basic	Theme:	Creatif	Blog182

You can already see how handy it is that we made our footer,
sidebar and header into separate sub template files!

Single	Page

Now before we go and add comments to our Post, let’s first
duplicate the single.php file and name the new version page.php.
As you recall from Chapter 4, when WordPress needs to display a
Page, it checks for these files:

Page – www.example.com/page_title

page_title.php > page.php > index.php

So now we’re using our single Post template as our Page template
as well. If you wanted to you could make adjustments to this file
that would only show up when a visitor was viewing a single Page.
And in fact you could make a special version of the page.php file
on top of that and name it after a specific Page to even further
customize. As it stands though, our simple duplicate will do us
just fine.

Adding	Comments

A fundamental part of our blog is missing from the single Post
page, that’s right, comments! What blog is a blog without
comments on blog posts?

http://www.example.com/page_title

Building	a	Basic	Theme:	Creatif	Blog18�

So begin by creating a file called comments.php and then go back
to single.php and just after the endif; paste in this code:

<div id=”comments_template”>

 <?php comments_template(); ?>

</div>

Along with the header, sidebar and footer, comments have a special
include tag that works just like a regular include. You should also
note that you can in fact add comments to Pages as well, but in our
theme we won’t be doing that.

Now comments.php can be one of the more intimidating theme
files, but we’ll go through it piece by piece and you’ll find it’s not
too scary in the end. The file is comprised of three parts:

Fig 5-6 – Comments on a blog post.

Building	a	Basic	Theme:	Creatif	Blog18�

1. A check to see if the comments are password protected

2. A loop through the comments

3. An “Add your Comment” form

So let’s look at each of these in turn.

Checking	for	Password	Protection	and	an		
Attached	Post

The first lines we add to the comments.php file are always
the same:

<?php

if (’comments.php’ == basename($_SERVER[’SCRIPT_

FILENAME’])) die (’Please do not load this page directly.

Thanks!’);

if (!empty($post->post_password)) {

 if ($_COOKIE[’wp-postpass_’ . COOKIEHASH] != $post-

>post_password) {

?>

<h2>This Post is Password Protected!</h2>

<p>Please enter the password to view Comments.</p>

<?php return;

 }

}

?>

What this code does is first, it checks to see if a person has loaded
up comments.php directly – i.e. without loading up single.php or
some other template file. If that happens, the page simply stops
and returns an error message. Later on down the page we’ll be

Building	a	Basic	Theme:	Creatif	Blog185

referencing a PHP object called $post, this has to be set in the
file that has included comments.php. So if we simply called the file
directly this object would be blank and the whole file would result
in errors.

Next we check to see if the page has been password protected.
WordPress gives authors the option to password protect a Post
or Page when writing. It is essential to check for this, to avoid
confusion. So the code checks if the Post’s password field is
empty, and if it isn’t then we check if the user has logged in, else
we give them an error message.

For the most part you don’t need to worry about this code snippet,
just copy+paste it in to your comments files when theming.

The	Comment	Loop

<?php if ($comments) : ?>

 <h2>Comments</h2>

 <ol id=”comments”>

 <?php foreach ($comments as $comment) : ?>

 <!-- Looping content -->

 <?php endforeach; ?>

<?php else : ?>

 <!-- If there are no comments... -->

<?php endif; ?>

The next part of the code is the main comment loop. Shown above
is the structure of the loop, where we’ve replaced some segments
of code with an HTML comment to simplify it for explanation.

Building	a	Basic	Theme:	Creatif	Blog186

The code begins by checking if there are any comments, if there are
we’re going to show them as an ordered list , and if not then
we’ll later add some code to tell the user.

The loop through the comments is similar to the for loops we
discussed in Chapter 4. However it is a slightly different variant
called a Foreach Loop. This loop cycles through a set of items and
then acts on each one.

So in our case we have the set of $comments, and we’re going to go
through each one in turn display them. With each cycle of the loop we
take the next comment and place it in $comment so that we can run
some standard template tags to extract the comment information.

For Each Comment

So for each comment we will display an element. Inside
the element we will use some standard Template Tags for extracting
comment details, namely:

comment_ID() – Outputs the ID number of the comment

comment_author_link() – Outputs the commenter’s name with
a link to their specified URL

comment_date() – Outputs the date/time of the comment

comment_text() – Outputs the actual comment text

We will also use the get_avatar function to add Gravatars to the
comments. Gravatars are small images that users can create at
http://gravatar.com and which are associated with a comment by
means of an email address. Since 2.5 WordPress has integrated
Gravatar functionality and adding them is extremely simple. We just
need this code:

http://gravatar.com

Building	a	Basic	Theme:	Creatif	Blog187
<?php if (function_exists(‘get_avatar’)) {

 echo get_avatar(get_comment_author_email(),’40’);

} ?>

The code first checks that the get_avatar function exists or in
other words that this theme is running on an instance of WordPress
newer than 2.5. If it does then we pass the email address of the
commenter as well as the size in pixels that we want the image.
The output will be an tag with a class=”avatar” so that we
can format it correctly!

Here’s how each comment will look:

<li id=”comment-<?php comment_ID(); ?>”>

 <h4><?php comment_author_link(); ?></h4>

 <small><a href=”#comment-<?php comment_ID(); ?>”>

 <?php comment_date(‘M jS, Y’); ?>

 </small>

 <div class=”the_comment”>

 <?php comment_text(); ?>

 </div>

 <?php if (function_exists(‘get_avatar’)) {

 echo get_avatar(get_comment_author_

email(),’40’);

 } ?>

Alternating Comment Classes

Now currently every comment looks the same, but we want them
to alternate their CSS class so that we can differentiate visually
between comments. To do this, we first need to set a variable
before the loop begins like this:

<?php $altcomment = ‘alt’; ?>

Building	a	Basic	Theme:	Creatif	Blog188

Then in the loop we’ll edit the element slightly to set its
class like this:

<li class=”<?php echo $altcomment; ?>” id=”comment-<?php

comment_ID(); ?>”>

So the first element will have the class “alt”. Now we need
to add some code to make this variable switch back and forth on
each alternate pass. So just before the <?php endforeach; ?>
statement we add this code:

<?php

 if ($altcomment == ‘alt’) {

 $altcomment = ‘’;

 } else {

 $altcomment = ‘alt’;

 }

?>

This if statement swaps the value of $altcomment between “alt”
and nothing each time.

Note that if you’re not used to PHP, in the condition we are
checking, you need to use a double == sign. A single = tells PHP to
assign the value to the variable, whilst a double == check if they are
equivalent. This is an important distinction.

If there are No Comments

Displaying comments is all set, but what if there are no comments
to display? We need to tell WordPress what to do when that
happens, so that users are informed rather than left hanging. In
some instances the post may not even have comments enabled,
while in others there simply might not be any yet. So in the event
there are no comments, we’ll use this code:

Building	a	Basic	Theme:	Creatif	Blog189
<?php if ($post->comment_status == ‘open’) : ?>

 <p>There are no comments yet, add one below.</p>

<? else : ?>

 <p>Comments are closed.</p>

<?php endif; ?>

So here we check if the comment_status is set to open and
depending on the outcome display one of two messages to
the user.

The Full Comment Loop Code

So our final loop code looks like this:

<?php $altcomment = ‘alt’; ?>

<?php if ($comments) : ?>

 <h2>Comments</h2>

 <ol id=”comments”>

 <?php foreach ($comments as $comment) : ?>

 <li class=”<?php echo $altcomment; ?>”

id=”comment-<?php comment_ID(); ?>”>

 <h4><?php comment_author_link();

?></h4>

 <small><a href=”#comment-<?php

comment_ID(); ?>”>

 <?php comment_date(’M jS,

Y’); ?>

 </small>

 <div class=”the_comment”>

 <?php comment_text(); ?>

 </div>

 <?php if (function_exists(‘get_

avatar’)) {

 echo get_avatar(get_

comment_author_email(),’40’);

Building	a	Basic	Theme:	Creatif	Blog190
 } ?>

 <?php

 if ($altcomment == ‘alt’) {

 $altcomment = ‘’;

 } else {

 $altcomment = ‘alt’;

 }

 ?>

 <?php endforeach; ?>

<?php else : ?>

 <?php if ($post->comment_status == ‘open’) : ?>

 <p>There are no comments yet, add one below.</p>

 <? else : ?>

 <p>Comments are closed.</p>

 <?php endif; ?>

<?php endif; ?>

The	Leave	a	Comment	Form

The final part of the comments file is a form for readers to add their
own comments. This part looks a lot more complicated because we
have to check if the reader needs to be logged in, if they are logged
in, or if they are not logged in. Just remember though, it’s basically
just a form.

So let’s go through piece by piece:

<?php if ($post->comment_status == ‘open’) : ?>

 <h3>Leave a Comment</h3>

 <?php if (get_option(’comment_registration’) &&

Building	a	Basic	Theme:	Creatif	Blog191
!$user_ID) : ?>

 <p>You must be <a href=”<?php bloginfo(’url’);

?>/wp-login.php?redirect_to=<?php the_permalink();

?>”>logged in to post a comment.</p>

 <?php else : ?>

First we check to see if comments are open. Assuming they are,
we show a title saying “Leave a Comment”, and then check if
registration / login is necessary to comment. This is a setting that
the blog owner sets in WordPress’ dashboard. If the user does
need to login, we send them to the wp-login page with a redirect
value set to bring them back afterwards.

If they are either already logged in, or it’s not necessary to be
registered, then we start showing the comment form:

<form action=”<?php bloginfo(’url’); ?>/wp-comments-post.

php” method=”post” id=”commentform”>

<?php if ($user_ID) : ?>

 <p>Logged in as <a href=”<?php echo get_

option(’siteurl’); ?>/wp-admin/profile.php”><?php echo

$user_identity; ?>.

 <a href=”<?php echo get_option(’siteurl’); ?>/wp-login.

php?action=logout” title=”Log out of this account”>Logout</

a></p>

<?php else : ?>

First we have a <form> tag defining what action to take. Then we
check if the reader is a registered/logged in user, because if they
are then we don’t need to ask for much information, instead we can
print their identity and give them a logout link.

Now if the reader isn’t logged in, we know we don’t need to show
them a register link, because we already checked for that previously.
So instead we can assume that registration is not necessary and
show them some extra form fields to fill in for name, email and URL:

Building	a	Basic	Theme:	Creatif	Blog192
<?php else : ?>

<p><input type=”text” name=”author” id=”author”

value=”<?php echo $comment_author; ?>” size=”50” />

<label for=”author”><small>Name <?php if ($req) echo

“(required)”; ?></small></label></p>

<p><input type=”text” name=”email” id=”email” value=”<?php

echo $comment_author_email; ?>” size=”50” />

<label for=”email”><small>Mail (will not be published)

<?php if ($req) echo “(required)”; ?></small></label></p>

<p><input type=”text” name=”url” id=”url” value=”<?php echo

$comment_author_url; ?>” size=”50” />

<label for=”url”><small>Website</small></label></p>

This code snippet is mostly just HTML form fields. Note that we
check a PHP variable called $req which WordPress sets to lets us
know if a field is mandatory. Also you will see that the value’s of
the fields are set in case the form has to be displayed again (for
example a required field wasn’t filled out) or if we are dealing with a
returning commenter – to make their life easier.

Finally, a textarea is needed to put the actual comment. Because
this textarea applies to both registered and unregistered users, we
need an endif statement first.

<?php endif; ?>

<p><textarea name=”comment” id=”data” cols=”60” rows=”7”

tabindex=”4”></textarea></p>

<p><input name=”submit” type=”submit” id=”submit”

tabindex=”5” value=”Submit Comment” />

<input type=”hidden” name=”comment_post_ID” value=”<?php

echo $id; ?>” />

</p>

<?php do_action(’comment_form’, $post->ID); ?>

</form>

<?php endif; >

Building	a	Basic	Theme:	Creatif	Blog19�

The hidden input is the ID of the new comment being submitted
to the Database and do_action() is another hook function to let
user-installed WordPress plugins add extra functionality to the
comments section. For example a live comment preview plugin
would output some code there.

Wrap	up	of	the	Comments.php	File

So with that we have a basic comments file. There is a lot
more PHP involved in the comments page, but as you work
with it you’ll find it’s not too complicated. In the next chapter we’ll
do some more advanced work on the file to separate trackbacks
from comments. We’ll also look at how you can add threaded
comments – a feature that has only just been introduced since
WordPress 2.7. But for now, we’re all done here.

Customizing	a	Search		
Results	Page

As we discussed earlier, when a user searches for something in
WordPress, the following file hierarchy is used:

Search – www.example.com/?s=search_word

search.php > index.php

To make a custom search results page, we simply copy everything
from index.php to search.php and then make a few changes to
customize the page.

First we’ll delete the featured post include and change the_
content(‘Read More’) to the_excerpt(). The difference
between these two functions is that the first will add a “Read More”
only if the writer has specified it in the Post using the <!--more-->

http://www.example.com/?s=search_word

Building	a	Basic	Theme:	Creatif	Blog19�

tag. The second function will always display an excerpt, regardless
of the writer’s actions. Since we are displaying the results of a
search, it’s important to ensure only excerpts are displayed.

Just above the search results, we’ll add a page title to remind the
user what they searched for. The title is a simple matter – a value
is saved every time a search is submitted as the variable $s. So to
display that search term, we use an echo statement:

<h4>Search results for ‘<?php echo($s); ?>’.</h4>

<div class=”separator”></div>

This is just a little bit of raw PHP, just displaying the value of $s.

And that’s it, we now have a custom search results page.

The	Archives

There are many ways a user may wish to browse the archives of a
blog – by date, by category, by author or by tag. The hierarchies for
these four archive types look like this:

Date Archives – www.example.com/2008/12

date.php > archive.php > index.php

Category Archives – www.example.com/category/category_title

category-id.php > category.php > archive.php > index.php

Tag Archives – www.example.com/tag/tag_name

tag-slug.php > tag.php > archive.php > index.php

Building	a	Basic	Theme:	Creatif	Blog195

Author – www.example.com/author/author_name

author.php > archive.php > index.php

As usual all four default back to index.php at their most basic,
but note that also all four fall back to archive.php. So if we have
a clever archive.php we can handle all four types of archives, so
let’s create that now!

First save search.php as archive.php then replace the title <h4>
line with:

<h4>Archive of <?php wp_title(‘ ‘, true, ‘’); ?></h4>

Next replace the following lines up to <?php endwhile; ?> with
this code:

 <?php if(have_posts()) : while(have_posts()) : the_

post(); ?>

 <a href=”<?php the_permalink(); ?>”

title=”<?php the_title(); ?>”><?php the_title(); ?>

 <?php endwhile; ?>

This creates an unordered list of all Post titles in the archive. We
now have a nicely formatted list based archive that will be shown
for any of the four types of archives.

Adding	a	Custom	�0�	Page

A 404 error message is shown when a file, Post, Page or URL is
wrong or has gone missing. A lot of the time, you’ll see the some
pretty unhelpful 404 pages around. A few simple things can be
displayed here to improve the user experience dramatically.

Building	a	Basic	Theme:	Creatif	Blog196

A short message, search form and sitemap will give the user all the
tools they need to find what they were looking for. So create a new
file called 404.php and paste in this code:

<?php get_header(); ?>

 <div id=”block_content”>

 <div id=”content_area” class=”block”>

 <div class=”block_inside”>

 <h1>404 - page not found</h1>

 <p>Sorry, the page you’re looking for has

gotten lost! Either keep looking, or try to find what you

were after below.</p>

 <div class=”separator”></div>

 <h3>Search the Site</h3>

 <?php include(TEMPLATEPATH.’/searchform.

php’); ?>

 <div class=”separator”></div>

 <h3>Sitemap</h3>

 <?php wp_get_archives(‘type=postbypost

’); ?>

 <div class=”separator”></div>

 <h3>Pages</h3>

 <?php wp_list_pages(‘title_li=’); ?>

 </div>

 </div>

 <?php get_sidebar(); ?>

 <!-- a Clearing DIV to clear the DIV’s because

overflow:auto doesn’t work here -->

 <div style=”clear:both”></div>

 </div>

 </div>

 </div>

<?php get_footer(); ?>

Building	a	Basic	Theme:	Creatif	Blog197

This code follows the same basic structure as all our other template
files, but our content includes a general error message, a search
form, using our regular include:

<?php include(TEMPLATEPATH.’/searchform.php’); ?>

And a sitemap made using two template tags we’ve seen
previously: wp_get_archives and wp_list_pages. You can test
out your 404 page by going to this URL:

http://example.com/index.php?error=404

Or by visiting any page that doesn’t exist! If your server isn’t
showing WordPress’ 404 page for missing pages, you may need to
edit the .htaccess file to specify where the 404 page is. You can
get details on doing this from the Codex: http://codex.wordpress.
org/Creating_an_Error_404_Page

Author	Pages	and	Multiple	
Authors

One of the great things about WordPress is that it can be setup to
work with multiple authors, whether it’s a buddy hired to write extra
content, or a professional organization with multiple staff. New
authors can be set up via the WP-Admin dashboard under Users.
Once setup each author will have posts they’ve written, a bio, an
author URL so it makes sense to make a special page to display
their information.

As we know when an author page is accessed, WordPress follows
this hierarchy of pages:

http://codex.wordpress.org/Creating_an_Error_404_Page
http://codex.wordpress.org/Creating_an_Error_404_Page

Building	a	Basic	Theme:	Creatif	Blog198

Author – www.example.com/author/author_name

author.php > archive.php > index.php

We’ve already got that general purpose archive, but it’d be nice
if we also listed the author’s details on their page. So create a file
called author.php and copy over the contents of the archive.
php file as a base to work off. Replace the heading area with the
following code:

<?php

 if(isset($_GET[‘author_name’])) :

 $curauth = get_userdatabylogin($author_name);

 else :

 $curauth = get_userdata(intval($author));

 endif;

 ?>

 <h1>About <?php echo $curauth->display_name; ?></h1>

 <div id=”auth_desc”><?php echo $curauth->description; ?></div>

 <div class=”separator”></div>

 <?php if ($curauth->user_url): ?>

 <p><a href=”<?php echo $curauth->user_url; ?>”

class=”button”>Visit <?php echo $curauth->display_name;

?>’s Website</p>

 <?php endif; ?>

<div class=”separator”></div>

Displaying author information isn’t as nicely coded as most other
parts of WordPress theming and requires a bit of unusual looking
code. We first check that the author_name has been passed via
the URL – e.g. www.example.com/author/author_name – and then
depending on the outcome, we use one of two get_userdata
functions to extract information about the author and create an
object called $curauth to hold that information. We can then
access data like the authors display_name, description and
user_url.

Building	a	Basic	Theme:	Creatif	Blog199

You can get more information on coding author pages from the
Codex: http://codex.wordpress.org/Author_Templates

Wrap	up	of	Creatif	Blog

In this chapter you have learnt the skills to make a completely
customized blog theme. Most WordPress theming can be achieved
using the information in this chapter, so you should now be able to
download other people’s themes and understand how they work.

With the basics of theming out of the way, we’ll spend the
remaining chapters of this book looking at advanced theming,
taking WordPress beyond the blog and into use as a flexible CMS.
You’ll also get more comfortable with general theming practices. So
if you found this has been a lot of information to absorb all at once,
don’t worry too much. Just keep reading and experimenting then
come back and go through this chapter again and it should all be
much clearer.

Adding	a	Screenshot!

But before we move on, it’s time to give our faithful blog a screenshot,
so that users can preview it before they apply the theme.

So simply navigate to the homepage of your blog, take a
screenshot using your preferred method and save it as
screenshot.png, placed in your themes directory. And now in the
dashboard under Appearance you should see your favorite site
appearing all nice and professional looking.

http://codex.wordpress.org/Author_Templates

Tools	for	Advanced	
Theming
In the previous chapters we covered the bulk of
theming basics, enough to build and deploy themes
for most blogging projects. In this chapter we’ll
look at some more advanced WordPress theming
techniques that will allow you to not only build more
complex blog themes, but to use WordPress as a
content management system for a variety of non-
blog projects.

We will do this by extending WordPress’ functionality
through plugins, Custom Fields, clever PHP, and
by reorienting existing WordPress functionality into
alternate uses. Although this is more advanced
work, it is nonetheless easy to grasp and use.

Tools	for	Advanced	Theming202

Tools	for	Advanced	Theming

In the previous chapters we covered the bulk of theming basics,
enough to build and deploy themes for most blogging projects. In
this chapter we’ll look at some more advanced WordPress theming
techniques that will allow you to not only build more complex blog
themes, but to use WordPress as a content management system
for a variety of non-blog projects.

We will do this by extending WordPress’ functionality through
plugins, Custom Fields, clever PHP, and by reorienting existing
WordPress functionality into alternate uses. Although this is more
advanced work, it is nonetheless easy to grasp and use.

If	Statements	and	Conditionals

Conditional statements such as if statements check if certain
conditions are true and depending on the outcome execute
different pieces of code. They can be extremely useful and in this
section we’ll look at a few more uses to show how they can be
applied in different scenarios.

Scenario	1:	Degrading	Gracefully

When you design WordPress themes for the public, you can never
be sure what your users are going to do with their WordPress
installs. Plugins may or may not be installed, comments may
or may not be switched on, specific pages may or may not be
there. How your theme handles different non-optimal situations
can be improved by some clever planning and use of conditional
statements. Let’s look at an example.

Imagine you have created a theme and for the archives you
ideally want the user to install a certain hypothetical plugin called

Tools	for	Advanced	Theming20�

extended_archives. In fact you’ve written it into the download
and installation instructions. But you happen to know that there
is another very popular archives plugin called regular_archives.
Moreover you also know there are a lot of people who are going to
install your theme and never bother with plugins at all, or perhaps
simply not know how to install them correctly! What do you do?

Option 1 – Just Paste in The Code

Since you specifically stated that the user should have the
extended_archives, you could just paste in the code (let’s say
hypothetically it looked like the code below)

<li class=”widget”>

 <h3>Browse Extended Archives</h3>

 <?php extended_archives(); ?>

However if the user hasn’t installed this plugin, or does so
incorrectly, then at best your page will have an empty spot, and at
worst it will cause errors on the page or simply cause the page not
to show. So this is not a very good idea.

Option 2 – Check If It Exists ...

A better solution is to check if the function exists (i.e. the plugin is
installed) before attempting to run it, like this:

<li class=”widget”>

 <?php if(function_exists(‘extended_archives’)) { ?>

 <h3>Browse Extended Archives</h3>

 <?php extended_archives(); ?>

 <?php } ?>

Tools	for	Advanced	Theming20�

With a neat if statement we have removed any chance of seeing
errors or killing our page. Now the only possibilities are the plugin
appearing or there being an empty spot.

Option 3 – Check If It Exists ... Else If ...

Still a big ugly gap isn’t really a good scenario either. Since we
know the alternate regular_archives plugin is also popular, it’d be
good to check if that’s installed as a fallback, and for that we can
extend our if statement with an elseif – providing for an
alternate case:

<li class=”widget”>

 <?php if(function_exists(‘extended_archives’)) { ?>

 <h3>Browse Extended Archives</h3>

 <?php extended_archives(); ?>

 <?php } elseif(function_exists(‘regular_archives’)) { ?>

 <h3>Browse Regular Archives</h3>

 <?php regular_archives(); ?>

 <?php } ?>

So here we check if the first plugin exists, and if it doesn’t, then we
check if the second plugin exists. You can have as many elseif’s
as you want. Note also that it’s important to use an elseif and
not just another if statement, because a user who had both plugins
installed should only have one used. With two if statements, both
plugins would appear, but with an elseif, the second is only
considered if the first condition has failed.

Option 4 – Check If It Exists ... Else If ... Else ...

Still if the user doesn’t have either plugin, we are still left with
a blank spot. So we need a fallback for when all else fails and
there are no plugins installed. In that case, we’ll revert back to

Tools	for	Advanced	Theming205

WordPress’ regular archives. We can add this default case with a
final Else:

<li class=”widget”>

 <?php if(function_exists(‘extended_archives’)){ ?>

 <h3>Browse Extended Archives</h3>

 <?php extended_archives(); ?>

 <?php } elseif(function_exists(‘regular_archives’)) { ?>

 <h3>Browse Regular Archives</h3>

 <?php regular_archives(); ?>

 <?php } else { ?>

 <h3>Browse Wordpress Archives</h3>

 <?php wp_get_archives(); ?>

 <?php } ?>

This process of checking for different scenarios and handling them
in turn is called degrading gracefully. It is an important use of
conditional statements, particularly in situations where your themes
will be used out in the wild and you have little or no control over
what your users will do.

Scenario 2: Splitting Comments and Trackbacks

Trackbacks (or Pingbacks) are links back to one blog from another.
They encourage conversation between sites and are an integral part
of blogging. WordPress views trackbacks as a kind of comment
and will automatically list incoming trackbacks to a post amongst
its comments. This isn’t ideal as people reading comments are
generally interested in reading all the comments together. So it
would be much better to list the trackbacks separately either before
or after the comments.

As you recall from Chapter 5, our comments.php file consists of a
big loop going through all the comments. Now if we could somehow
determine on each pass whether we were dealing with a comment

Tools	for	Advanced	Theming206

or a trackback, then we could decide whether to show it or not.
Then we could do a second pass and only show the reverse type.

The function get_comment_type() does exactly what we need.
Using an if statement we can compare the comment type with
a string. As you know from PHP there are several comparison
operators: == equivalent, != not equivalent, < less than, >
greater than.

Open up comments.php from our Creatif Blog theme from Chapter
5. Before editing the file, you may wish to save a backup copy.
Now find the main foreach loop. Just inside this loop we add an if
statement, so below the foreach line and above the endforeach
line, that checks if the comment type is equivalent to ‘comment’:

<?php foreach ($comments as $comment) : ?>

 <?php if(get_comment_type() == ‘comment’): ?>

 <li class=”<?php echo $altcomment; ?>”

id=”comment-<?php comment_ID(); ?>”>

 <h4><?php comment_author_link(); ?></h4>

 <small><a href=”#comment-<?php comment_

ID(); ?>”>

 <?php comment_date(‘M jS, Y’); ?></

small>

 <div class=”the_comment”>

 <?php comment_text(); ?>

 </div>

 <?php

 if ($altcomment == ‘alt’) {

 $altcomment = ‘’;

 } else {

 $altcomment = ‘alt’;

 } ?>

 <?php endif; ?>

<?php endforeach; ?>

Tools	for	Advanced	Theming207

So now in each cycle of the foreach loop the block of code is
executed only if it’s a comment. So now comments show, but
what about trackbacks? We simply create another loop and check
for the opposite case this time – i.e. that the comment type is not
‘comment’. So just below the end of the list, we create
a second heading and an list, like this:

<h2>Trackbacks and Pingbacks</h2>

 <?php foreach ($comments as $comment) :

 $comment_type = get_comment_type();

 if($comment_type != ‘comment’) { ?>

 <?php comment_author_link() ?>

 <?php } endforeach; ?>

That’s it! Your comments area is now be successfully split to
display trackbacks below the regular comments, all with the magic
of if statements!

Scenario 3: Switching the Title with Conditional Tags

In Chapter 4 we looked at Conditional Tags. These are functions
that return true if a certain page is being viewed. For example
is_category() returns true only if the page being viewed is a
category listing.

Conditional Tags are great for switching content around without
creating multiple files. A good example of this can be found in our
header.php file where we are setting the page title. Because the
<title></title> tag is so important to search engines it makes
sense to optimize it as much as possible on each page.

Tools	for	Advanced	Theming208

As you recall, in our Creatif Blog example, our title tag looks
like this:

<title><?php bloginfo(‘name’); ?><?php wp_title(); ?></title>

Now that’s OK, but wouldn’t it be better to display information
specific to each page? With an if statement and our knowledge of
WordPress Template Tags, this is easily done, here’s an example:

<title><?php

if(is_home()) {

 echo bloginfo(‘name’).’ - Home’;

} elseif(is_category()) {

 echo ‘Browsing the Category ‘;

 wp_title(‘ ‘, true, ‘’);

} elseif(is_archive()){

 echo ‘Browsing Archives of’;

 wp_title(‘ ‘, true, ‘’);

} elseif(is_search()) {

 echo ‘Search Results for “’.$s.’”’;

} elseif(is_404()) {

 echo ‘404 - Page got lost!’;

} else {

 bloginfo(‘name’); wp_title(‘-’, true, ‘’);

}

?></title>

This is a good example also of how elseif can be used over
and over. In different situations we’ve either outputted using an
echo statement, the value of a Template Tag such as bloginfo,
or used the wp_title tag in different ways. One useful bit of
PHP knowledge is that you can join two strings together with a .
character. So in the search example:

echo ‘Search Results for “’.$s.’”’;

Tools	for	Advanced	Theming209

We are displaying the string Search Results for ” followed
by the search term, followed by “. So if a person searched for
keyword, the title would be:

Search Results for “keyword”

Choosing Specific Pages / Posts

It is also possible to display content on very specific pages. Say
you wanted the title for the about page on your blog to be “All
About Me”, but you didn’t want to change the title in WordPress
itself for some reason. Different Conditional Tags have different
ways of specifying Pages, Posts, categories and so on. You
can check them all in the Codex: http://codex.wordpress.org/
Conditional_Tags

To choose a specific Page you can use any of these three:

1. ID – The ID number of the Post or Page – e.g. 3

2. Post Title – The title in WordPress – e.g. About Me

3. Post Slug – The string WordPress uses in the Post or
Page’s URL – e.g. about-me

So let’s say we chose to use the ID method. To find the ID of your
page go to Pages > Edit in your admin area, and select Edit on the
About Page. If you look in the address bar of your browser, you’ll
see the URL will have an ID at the end of it. This is that Page’s ID
number. Let’s say it is 3.

In that case you can simply append the following elseif to our
previous title if statement:

elseif(is_page(‘3’)) {

 echo ‘All About Me’;

}

http://codex.wordpress.org/Conditional_Tags
http://codex.wordpress.org/Conditional_Tags

Tools	for	Advanced	Theming210

Threaded	Comments	and	
WordPress	2.7

The release of WordPress 2.7 has brought a whole new set of
comment functionality including threading and a new, simpler
method for looping through comments. In this section we’ll create
a new comments.php file that uses the new features, then use
functions.php to switch between the new and legacy versions of
our comments depending on what version of WordPress the theme
is installed on.

Note: 2.7 is backwards compatible, so the code we developed
in Chapter 5 and earlier in this chapter will in fact still work in
WordPress 2.7

Fig 6-1 – WordPress 2.7 introduced threaded commenting.

Tools	for	Advanced	Theming211

Duplicating	and	Switching

So the first step is to duplicate the current comments.php file and
name the new file old-comments.php. Then in functions.php file
add these lines below our widgetization functions from Chapter 5.

add_filter(‘comments_template’, ‘legacy_comments’);

function legacy_comments($file) {

 if (!function_exists(‘wp_list_comments’))

 $file = TEMPLATEPATH . ‘/old-comments.php’;

 return $file;

}

Here we are creating a function that checks if the Template Tag
wp_list_comments exists. If it does then we know that WordPress
2.7 or higher is present and we can use comments.php. But If it
doesn’t, then we intercept the comments_template() call in our
single.php and use old-comments.php instead!

Upgrading	the	Comment	Loop

The biggest change to comments is the introduction of a simpler
loop. Our previous loop, that is everything between:

<?php if ($comments) : ?>

...

<?php else : ?>

Can now be replaced by

<?php if (have_comments()) : ?>

 <h2>Comments</h3>

 <ul class=”commentlist”>

 <?php wp_list_comments(‘type=comment&avatar_

size=40’); ?>

Tools	for	Advanced	Theming212

 <h2>Trackbacks and Pingbacks</h2>

 <ul class=”commentlist”>

 <?php wp_list_comments(‘type=pings’); ?>

 <div class=”navigation”>

 <div class=”alignleft”><?php previous_comments_

link() ?></div>

 <div class=”alignright”><?php next_comments_link()

?></div>

 </div>

As you can see all the various Template Tags we were using to
get the comment author, meta data, gravatars and text have been
replaced by a single new Template Tag:

<?php wp_list_comments(); ?>

This Template Tag takes a few different parameters. Here we’ve
used the type parameter to split up our comments from our
pingbacks. Another parameter you can use is style which
determines whether the comments are output as nested
lists or as <div>’s.

Although there is more than enough HTML output to do any CSS
styling that we could possibly need, there is a way to customize
the HTML that WordPress uses to output the comments. To do this
you need to pass a parameter called callback and then define a
function in functions.php for WordPress to use. You can grab an
example function from: http://codex.wordpress.org/Template_Tags/
wp_list_comments.

http://codex.wordpress.org/Template_Tags/wp_list_comments
http://codex.wordpress.org/Template_Tags/wp_list_comments

Tools	for	Advanced	Theming21�

Adding	Threading	/	Javascript	Functionality

Before going any further you should check that comment threading
has been enabled in your WordPress installation. You can do this
by going to Settings > Discussion and ticking the box that reads
Enable threaded (nested) comments.

Next we need to add one more line to our header.php file to
include the Javascript that WordPress 2.7 has introduced to enable
the comment form to appear inline with comments. Add this line
just before the wp_head() line:

<?php if (is_singular()) wp_enqueue_script(‘comment-

reply’); ?>

Fig 6-2 – Threading must be enabled to work on your site.

Tools	for	Advanced	Theming21�

Once this is done there are a few more adjustments to be made to
the comments.php file as follows:

1. Wrap the leave a comment form in <div
id=”respond”></div>, this will enable the Javascript
code to find the form.

2. Add <?php comment_id_fields(); ?> just inside the
<form> tag. This line adds a couple of hidden input
fields now needed.

3. And then because we have added the line from (2), we
can remove the now redundant line:

<input type=”hidden” name=”comment_post_ID”

value=”<?php echo $id; ?>” />

4. Finally we add a cancel link in case the commenter
changes their mind:

<div id=”cancel-comment-reply”><small><?php cancel_

comment_reply_link() ?></small></div>

And that’s it! We’ve successfully upgraded the comments.php file. If
you wish you can also simplify the first few lines that check where
the file has been opened from and whether it is password protected
with this slightly slimmer code:

<?php

if (!empty($_SERVER[‘SCRIPT_FILENAME’]) && ‘comments.php’

== basename($_SERVER[‘SCRIPT_FILENAME’]))

 die (‘Please do not load this page directly. Thanks!’);

if (post_password_required()) {

 echo ‘This post is password protected. Enter the

password to view comments.’;

 return;

}

?>

Tools	for	Advanced	Theming215

Custom	Fields

One of the most important ways that WordPress allows greater
customization and extension is through the use of Custom Fields.
These provide a way for WordPress users to provide extra data
when creating Posts that the theme designer can then use in
different ways. You can find the Custom Field section of a Post
by going to the Posts > Add New page in the WordPress admin
menu and scrolling down the page until you see the section labeled
Custom Fields.

Each Custom Field is a Name / Value pair. So first we define a name
(sometimes referred to as a key) – e.g. “Post Image”, “Related Post
URL”, “Digg Link”. Then each time a Post is created, we have to
add a value for those keys – e.g. “http://example.com/image-url”,
“http://example.com/related_post”, “http://digg.com/link”.

Because we can create any key / value pair, Custom Fields become
a way to add extra functionality to the standard WordPress system.
Instead of just having fields for title, content, author and so on, we
can now have extra fields for just about anything. So let’s take a
look at some examples.

Simple	Example	–	Featured	Post	Image

As you recall in our Creatif Blog theme, featured Posts have a
325px wide image image next to them. This image needed to be
included somehow on a Post but it can’t be in the main text area.
So we used Custom Fields.

Creating the Custom Field

As discussed in Chapter 5, to add a Custom Field, simply follow
these steps:

Tools	for	Advanced	Theming216

1. First in WordPress, we create a new Post, scroll down
the page to find the section Custom Fields.

2. Under Name (or Key in older versions of WordPress)
you can select a previously made Custom Field or
create a new one. Since this is the first time we’re using
the feature, we need to create a new one. In the text
box under Name, type in: large_preview and under
Value type in the URL to your image: http://example.
com/image.jpg then publish the Post.

Accessing the Custom Field Data in Our Theme

To access the Custom Fields, WordPress provides a special
Template Tag:

<?php the_meta(); ?>

Unfortunately this simple tag just produces a list of each
name/value pair, which isn’t very useful for our purposes. What we
need is a function that takes as input the Post ID and key/name and
then returns the matching value. That function is called get_post_
meta, and it works like this:

<?php echo get_post_meta($post->ID, ‘name’, true); ?>

The function takes three parameters, the Post ID, the key or name
we are looking up and a true/false value that tells the function if we
want just one result or a whole array of results. In our case we just
want one result – the image URL, and the key is large_preview, so
the code we use is:

<?php if (get_post_meta($post->ID, ‘large_preview’, true)) { ?>

Tools	for	Advanced	Theming217

So in our Creatif Blog theme, open up the featuredpost.php
file. As you will recall from the previous chapter we have a section
that reads:

<?php if (get_post_meta($post->ID, ‘large_preview’, true))

{ ?>

 <div class=”image_block”>

 <img src=”<?php echo get_post_meta($post->ID,

‘large_preview’, true); ?>” alt=”Featured Post” />

 </div>

<?php } ?>

What we are doing here is first using a simple if statement to
make sure the image is there, and if it is then we print it out as the
source of the tag. If we didn’t check to make sure the image
URL existed and outputted an empty image tag, we’d show a
broken image in the browser. So again it’s much better to
degrade gracefully.

Complex	Example	–	Showing	Featured	Posts		
in	the	Sidebar

Let’s try another example. Imagine if we wanted to add a set of
featured “Best of” posts at the end of each post, so that readers
could quickly go on and browse the best content our site has to
offer. What we could do is:

1. Create a Custom Field called “feature”. It can have
any value at all, because we’ll assume that if the field
has been set, then the post is meant to be featured. So
a simple “Yes” value would suffice.

2. Then in our sidebar.php file we’ll create a custom loop
using WP_Query. We’ll make it loop through the posts
checking to see if the Custom Field exists and if it
does, then we show a link. Here’s the code we need:

Tools	for	Advanced	Theming218
<li id=”featured” class=”widget”><h3>Best of the Blog</h3>

 <?php

 $bestof = new WP_Query();

 $bestof -> query(‘’);

 while($bestof -> have_posts()) : $bestof ->

the_post(); ?>

 <?php if (get_post_meta($post->ID,

‘feature’, true)): ?>

 <a href=”<?php the_permalink(); ?>”

title=”<?php the_title(); ?>”><?php the_title(); ?>

 <?php endif; ?>

 <?php endwhile; ?>

So here we run a WP_Query, not unlike our query to find recent
posts in Chapter 5, only this time we check each time to see if the
Custom Field feature has a value.

Adding	Theme	Options

Not every WordPress user is going to be familiar enough with
HTML and PHP to edit theme files in order to customize a
WordPress theme. Indeed it is our job to make editing the theme
files as unnecessary as possible by using widgetized sidebars, by
providing appropriate code hooks for plugins and where possible
by adding Theme Options.

Theme Options are set through an admin screen when a theme
is activated. On the admin screen you might ask the WordPress
administrator to decide for example what color scheme they’d
like to use, to provide a URL to their logo image or some other
customization to tailor the theme to their needs.

Tools	for	Advanced	Theming219

An example of a theme which provides Theme Options is the
default Kubrick theme. Load up the theme into your WordPress
install and you will see under Appearance a new tab appears that
reads Header Image and Color. On this screen you can set options
for the header.

Functions.php

An admin screen can be created by using the functions.php file
in your theme. This file is a special PHP file that behaves like a
WordPress plugin and is loaded into both the admin and front-ends
of the theme during WordPress initialization – if it is present in the
theme directory.

In the previous chapter we used functions.php to register our
sidebar to add and edit widgets. You can also use the file to add

Fig 6-3 – Kubrick’s Theme Options page.

Tools	for	Advanced	Theming220

general functions to do all sorts of things, including adding an
admin screen. If you examine the default Kubrick theme that comes
with WordPress and open up its functions.php file you will find a
function called kubrick_add_theme_page() with a corresponding
add_action line before it. These lines create the admin screen to
set the options.

It’s all fairly complicated though and certainly doesn’t make adding
Theme Options easy. Fortunately there is a much simpler way that
we’ll use in this book.

Using	WP-Theme-Toolkit

WordPress Theme Toolkit is a PHP class developed by http://
planetozh.com that makes adding Theme Options really simple.
Here’s how:

1. Visit: http://tinyurl.com/wp-theme-toolkit and scroll
down to click Download

2. Download the two files themetoolkit.php and
functions.php to your theme directory

3. If you already have functions defined in your
functions.php file you will need to merge the two files
together. Copy your existing functions and paste them
at the bottom of the new file in the section labelled
“Additional Features and Functions”.

4. You can leave themetoolkit.php alone, this file does
all the hard work behind the scenes, instead, open up
functions.php and find the four example options,
called setting1 through to setting4. You should
replace these with your own Theme Options for the
user to set using the same formatting.

http://planetozh.com
http://planetozh.com
http://tinyurl.com/wp-theme-toolkit

Tools	for	Advanced	Theming221

5. Finally you can either replace the example
creditcard() function with your own function making
use of the Theme Options, or simply use the variables
in your theme using this notation:

<?php echo $mytheme->option[‘setting’] ?>

In Chapter 8 we’ll go through a step by step example of using WP-
Theme-Toolkit to add Theme Options to build a custom homepage
for our Creatif Site theme.

Building	a	Basic	Plugin

The two main means of extending WordPress are through theming
and plugins. We’ve dealt with theming in some detail now, so let’s
take a look at plugins. Although you certainly don’t need to know
how to make your own, it is good to know how they work, where to
find them and the sorts of things you can do with plugins.

What	is	a	Plugin?

A plugin is a file or set of files that extend WordPress’ core
functionality. Plugins are installed in the /wp-content/plugins/
directory and need to be activated through the WordPress
WP-Admin to work.

The files themselves generally contain PHP functions that hook
into WordPress either automatically using special API hooks called
actions and filters, or manually when you call the functions in your
theme like you would a Template Tag, or often a combination of
the two.

Most plugins will have an instruction manual or readme file
accompanying them explaining how to use the plugin. In some

Tools	for	Advanced	Theming222

cases you won’t need to modify your theme at all because the
plugin overrides the WordPress functionality you’re already using –
for example it might add a filter to the_content. In other cases the
plugin might output some extra code in the hook lines we added in
our theme, for example replacing <?php wp_head() ?> with some
custom code in the header.

Where	to	Find	Plugins

There are thousands of developers who create and distribute
plugins to do just about everything imaginable. Generally if you
need something, try Googling it or searching the WordPress Plugin
Directory – http://wordpress.org/extend/plugins/.

Weblog Tools Collection – http://weblogtoolscollection.com/ – is an
excellent blog for keeping up with new plugin releases.

Creating	a	Simple	jQuery	CSS	Switcher	Plugin

Creating plugins is an advanced topic and generally beyond
the scope of this book. However in this section we’re going to do
some very simple plugin development to demonstrate the basics of
plugin development.

Building the functionality WITHOUT the plugin

As you will recall in Chapter 3, we created two versions of our
stylesheet for the Creatif themes, a light and a dark. With some
simple use of the Javascript library jQuery – http://jquery.com – we
should be able to switch between the two stylesheets. Our aim in
this section is to later make a plugin to do this. However first let’s
make it work simply in our theme files so we can be sure that the
underlying idea is working.

http://wordpress.org/extend/plugins/
http://weblogtoolscollection.com
http://jquery.com

Tools	for	Advanced	Theming22�

First we’ll create is a sidebar element. Paste this code into the
sidebar.php file:

<li id=”search” class=”widget”><h3>Switch Colours</h3>

 <ul id=”color_switch”>

 <li id=”switch_light”><a>Light

 <li id=”switch_dark”><a>Dark

Next grab both the latest jQuery file as well as the jQuery
Cookie plugin from http://jQuery.com and http://www.stilbuero.
de/2006/09/17/cookie-plugin-for-jquery/.

Then in the <head></head> area we add in some jQuery code:

 <script type=”text/javascript” src=”<?php

bloginfo(‘template_directory’); ?>/scripts/jquery-

1.2.6.min.js”></script>

 <script type=”text/javascript” src=”<?php

bloginfo(‘template_directory’); ?>/scripts/jquery.cookie.

js”></script>

<script type=”text/javascript”>

 $(function(){

 //on the document load, get the cookie

‘bodyID’ (our colour scheme of choice

 bodyId = $.cookie(‘bodyID’);

 //Set it as the id. If it’s dark it’ll stay dark!

 $(‘body’).attr(‘id’, bodyId);

 $(‘#switch_light’).click(function(){

 $(‘body’).attr(‘id’, ‘’);

 $.cookie(‘bodyID’, ‘’);

 //set the cookie to nothing if

this is clicked

 });

 $(‘#switch_dark’).click(function(){

http://jQuery.com
http://www.stilbuero.de/2006/09/17/cookie-plugin-for-jquery/
http://www.stilbuero.de/2006/09/17/cookie-plugin-for-jquery/

Tools	for	Advanced	Theming22�
 $(‘body’).attr(‘id’, ‘dark’);

 $.cookie(‘bodyID’, ‘dark’);

 //set the cookie to dark if

this is clicked!

 });

 });

</script>

If you now run your theme you should see two options in the
sidebar reading Light and Dark. Clicking on each will switch the
background colors.

Making the plugin file

Now that we’re sure the idea works, we can build it into a plugin.
So first create a new directory somewhere to house the plugin.
Let’s call our plugin “CSS Switcher” and so in that directory create
a file called switcher.php and add this code:

<?php

/*

Plugin Name: CSS Switcher

Plugin URI: http://rockablepress.com

Description: A *very* simple plugin to demonstrate plugin

construction. It switches our theme between two CSS files

Author: Collis Ta’eed

Version: .01

Author URI: http://rockablepress.com

*/

?>

http://rockablepress.com
http://rockablepress.com

Tools	for	Advanced	Theming225

Make sure there is no space before or after the <?php ?> tags or
you will get errors when you run the plugin. The comment is similar
to the comment we added in our theme style.css file in that it
outputs information in the WordPress dashboard to identify the
plugin. Below the comment code, we’ll now add a very
simple function:

function sidebar_switcher() {

 echo “<ul id=’color_switch’>

 <li id=’switch_light’><a>Light

 <li id=’switch_dark’><a>Dark

 ”;

}

Fig 6-4 – Our simple CSS Switcher plugin.

Tools	for	Advanced	Theming226

This function simply outputs the code we need in our sidebar.
We can now go back to the theme files and edit sidebar.php to
remove the lines we added earlier and replace them with:

<li id=”switch” class=”widget”>

 <?php if(function_exists(‘sidebar_switcher’)) { ?>

 <h3>Switch Colours</h3>

 <?php sidebar_switcher(); ?>

 <?php } ?>

As you recall from earlier in this chapter we are checking to make
sure the plugin exists, if it does then we run the plugin function –
sidebar_switcher(). So you can now test this out by uploading
your plugin to wp-content/plugins and activating it in the
WordPress admin area, then uploading the sidebar.php file and
refreshing your site.

It should all work exactly as before. But hang on, the jQuery parts
are still hardcoded into the theme! So let’s move those into the
plugin file as well.

Hooking into wp_head

Go back to your header.php file and delete the jQuery lines we
added earlier and re-upload that file. Your theme is now back to
normal with only the addition to the sidebar of the code to call
the plugin.

Next open up the plugin switcher.php file and add these lines:

function sidebar_js() {

 echo “

 <script type=’text/javascript’ src=’http://ajax.

googleapis.com/ajax/libs/jquery/1.2.6/jquery.min.js’></script>

http://ajax.googleapis.com/ajax/libs/jquery/1.2.6/jquery.min.js'
http://ajax.googleapis.com/ajax/libs/jquery/1.2.6/jquery.min.js'

Tools	for	Advanced	Theming227
 <script type=’text/javascript’ src=’http://dev.jquery.

com/export/5918/trunk/plugins/cookie/jquery.cookie.js’></

script>

 <script type=’text/javascript’>

 $(function(){

 //on the document load, get the cookie

‘bodyID’ (our colour scheme of choice

 bodyId = $.cookie(‘bodyID’);

 //Set it as the id. If it’s dark it’ll stay

dark!

 $(‘body’).attr(‘id’, bodyId);

 $(‘#switch_light’).click(function(){

 $(‘body’).attr(‘id’, ‘’);

 $.cookie(‘bodyID’, ‘’);

 //set the cookie to nothing if

this is clicked

 });

 $(‘#switch_dark’).click(function(){

 $(‘body’).attr(‘id’, ‘dark’);

 $.cookie(‘bodyID’, ‘dark’);

 //set the cookie to dark if

this is clicked!

 });

 });

 </script>”;

}

add_action(‘wp_head’, ‘sidebar_js’);

Again we’ve created another function, only this time instead
of having to call it manually with a Template Tag, we’ve used
something called add_action. This hooks our new sidebar_js
function up with the wp_head plugin hook that is in the header.php
theme file. You can now re-upload the plugin and it should all
work perfectly!

http://dev.jquery.com/export/5918/trunk/plugins/cookie/jquery.cookie.js'
http://dev.jquery.com/export/5918/trunk/plugins/cookie/jquery.cookie.js'

Tools	for	Advanced	Theming228

Other Hooks and More Information on Plugin Development

The wp_head action we just used is just one of many available
action hooks, you can find a list of them all at: http://codex.
wordpress.org/Plugin_API/Action_Reference

Actions are not the only way to hook in either, you can also
use Filters which as the name suggests add Filters to regular
WordPress outputs. So for example you could create a Filter to
the_title() like this:

add_filter(‘the_title’, ‘some_function’);

Where some_function is a reference to a function does something
to the text. You can find the docs for filters at: http://codex.
wordpress.org/Plugin_API/Filter_Reference

There is plenty more information on plugin topics such as creating
option screens, licensing and so on in the Codex: http://codex.
wordpress.org/Writing_a_Plugin

Page	Templates

As you recall from Chapter 4, all WordPress operates on a Page
hierarchy. That is when a certain Page is called, WordPress moves
down the hierarchy of theme files to determine which file to use,
with all of them defaulting to index.php if nothing else is available.

For Pages, you will recall we define this hierarchy as:

Page – www.example.com/page_title

some_template.php > page.php > index.php

http://codex.wordpress.org/Plugin_API/Action_Reference
http://codex.wordpress.org/Plugin_API/Action_Reference
http://codex.wordpress.org/Plugin_API/Filter_Reference
http://codex.wordpress.org/Plugin_API/Filter_Reference
http://codex.wordpress.org/Writing_a_Plugin
http://codex.wordpress.org/Writing_a_Plugin

Tools	for	Advanced	Theming229

In this case the some_template.php file refers to what is known
as a Page Template which has been applied to that Page in
WordPress’ admin area. You can create multiple Page Templates
and assign them to different Pages as you please. You can create
a Page Template by copying the contents of our default Page
Template page.php into a new file, let’s call it mytemplate.php and
adding this code to the top of your template file:

<?php

/*

Template Name: MyTemplate

*/

?>

Then in WordPress when you create a Page you can see an option to
switch Page Templates from the default template – i.e. page.php –
to the custom file – i.e. “MyTemplate”. Since all we have done so
far is copy page.php with no alterations this won’t actually make
your new Page look any different. However you can now make edits
to mytemplate.php to alter the look or layout of all pages using this
template, and your other pages will remain the same.

Fig 6-5 – Page Templates can be selected either when editing or quick-editing.

Tools	for	Advanced	Theming2�0

Example:	Creating	a	Special	Archives	Page

In the last chapter we created a generic archives.php to display
if a visitor wishes to see all Posts with a certain tag, category,
author or date. Now we’ll create a special Page on our site to
display lists of these archives all on the one page. We’ll call it the
Complete Archives.

Start off a new file completearchives.php with this code:

<?php

/*

Template Name: Complete Archives

*/

?>

Below this we’ll add this modification of page.php:

<?php

/*

Template Name: Complete Archives

*/

?>

<?php get_header(); ?>

<div id=”block_content”>

 <div id=”content_area” class=”block”>

 <div class=”block_inside”>

 <?php if(have_posts()) : while(have_

posts()) : the_post(); ?>

 <h2><a href=”<?php the_permalink(); ?>”

title=”<?php the_title(); ?>”><?php the_title(); ?></h2>

 <div class=”separator”></div>

 <?php the_content(); ?>

 <?php endwhile ?><?php endif; ?>

Tools	for	Advanced	Theming2�1
 <h3>Date Based Archives</h3>

 <?php wp_get_archives(‘type=monthly’);

?>

 <div class=”separator”></div>

 <h3>Category Based Archives</h3>

 <?php wp_list_cats(); ?>

 <div class=”separator”></div>

 <h3>Pages</h3>

 <?php wp_list_pages(‘title_li=’); ?>

 <div class=”separator”></div>

 <h3>Tags</h3>

 <?php wp_tag_cloud(‘’); ?>

 <div class=”separator”></div>

 <h3>Still can’t find what you’re after?</h3>

 <p>You can search the site:</p>

 <?php include(TEMPLATEPATH.’/searchform.

php’); ?>

 </div>

 </div>

 <?php get_sidebar(); ?>

 <!-- a Clearing DIV to clear the DIV’s because

overflow:auto doesn’t work here -->

 <div style=”clear:both”></div>

 </div>

 </div>

</div>

<?php get_footer(); ?>

As you can see we’ve hardcoded functions on to the page to
display dates, categories and Pages as well as a tag cloud of all
tags used on the site. To use this Page Template, add it to your
WordPress theme directory. Then inside WP-Admin, select Pages >
Add New then add a title, e.g. “Complete Archives”, and if you

Tools	for	Advanced	Theming2�2

wish some text, e.g. “Browse our archives below”. Then in the right
sidebar set the Page Template to Complete Archives and
hit Publish.

You will see the content of the Post – the title and text – now
appear in an altered layout, one that shows all our archives by date,
category and tags. If you switch the Page Template back to the
default, the same title and text will appear on a regular Page.

We’ll use Page Templates in Chapter 8 to create a custom
homepage for our Creatif Site theme.

Repurposing	WordPress	
Functionality

Although WordPress is a blogging platform, there is no reason
to only use WordPress to make blogs. To take our theming to
the next level, you need to break out of the idea that WordPress
is for blogs only. WordPress Posts don’t need to be blog posts.
WordPress Post Categories don’t need to be blog categories. All
the functionality in WordPress can be repurposed into a variety of
other uses.

In the next Chapter we’ll use Posts to create portfolio items,
Categories will become different parts of the portfolio, and we’ll
use Custom Fields to add extra information to our portfolio items to
customize them appropriately.

In Chapter 8, we’ll forget about Posts altogether and focus on
Pages and sub-Pages to make a flexible managed site. And finally
in Chapter 9, we’ll look at how to repurpose WordPress to turn it
into everything from a membership directory to an e-commerce
store. The key is to break out of blog thinking and look at
WordPress as a toolkit of ways to display and manage content.

Building	an	Advanced	
Theme:	Creatif	Portfolio
So far we’ve used WordPress to build a regular
blog. While blogs account for the vast majority of
WordPress use, with a little ingenuity, it’s possible
to take WordPress’ flexibility and create all kinds
of sites. One of the fundamental concepts to learn
to do this is that a Post does not need to be a blog
post, it is simply a content holder.

When you stop seeing Posts as blog posts, a whole
new set of possibilities opens up. To build a portfolio
we will reuse WordPress Posts as portfolio entries.
So the Post title will be the portfolio item title, the
Post text will be the portfolio item description, the
Post categories will be the portfolio item categories,
and so on.

Most important to extending and repurposing Posts
are the Custom Fields options that we looked at in
the last chapter. Here we’ll use Custom Fields to
house all our preview and additional images.

Building	an	Advanced	Theme:	Creatif	Portfolio2�5

Making	a	Plan

Before we go diving into the HTML and PHP it makes sense to
figure out a rough plan of attack. So in this chapter we are making a
portfolio site, it will have categories of portfolio items and each item
will have a few different images and thumbnails. In addition to our
portfolio items we’ll also have regular blog posts and any additional
pages like an About page.

A	Portfolio	and	a	Blog

Our portfolio items will be made by repurposing regular Posts
and adding Custom Fields to get our portfolio images. Since we
have regular blog posts as well we are going to need two sets of
categorization for our Posts. We’ll create a Portfolio category and a
Blog category, then anything that is in the Portfolio category or its
subcategories will be templated as a portfolio item, and similarly
anything in the Blog category or its subcategories will be templated
as a blog post, just like we did in the previous theme!

Along with our homepage, we’re going to need a listing page for
all blog posts and another listing page for all portfolio items. These
two (Portfolio and Blog) will go in to the menu as our main links
after the home button.

One way to do this is to make a special Page Template for each
and then create a Page in WordPress and assign that template.
Then in each Page Template we’d create custom queries to grab
Posts. This method does work but requires a few unintuitive code
workarounds so we are going to use it. You can however learn
about the technique at http://www.nathanrice.net/blog/creating-a-
blog-page-with-paging/

http://www.nathanrice.net/blog/creating-a-blog-page-with-paging/
http://www.nathanrice.net/blog/creating-a-blog-page-with-paging/

Building	an	Advanced	Theme:	Creatif	Portfolio2�6

Using	a	Clever	Archives

Since the portfolio listing page is actually just the Portfolio category
and the blog post listing page is actually just the Blog category, we
can use a clever version of either category.php or archive.php
with an if/else switcher to template the two listing pages differently.
This way we don’t need to worry about extra Page Templates or
special WP_Query loops.

Hardcoding	Some	Category	and	Page	Links

Because we are making both portfolio listing and blog posts out of
our WordPress Posts, we’re going to have to do some hardcoding.
That is to say that in certain places we’ll have to work out what
category ID our blog category has and use that ID in the code, and
again for the portfolio category.

This is generally not a great idea because different WordPress
installations will have different ID numbers depending on what order
the user has created those categories. So that means when we
package up the theme we’ll need to provide some help instructions
for setting up the blog.

There are no fool-proof ways around this, even with some
advanced PHP we’ll still be relying on the user setting up two
specific categories (Blog and Portfolio). However later in the
chapter you’ll see how we can at least limit the possibility of
mistakes by using defined constants.

Building	an	Advanced	Theme:	Creatif	Portfolio2�7

The	Plan	of	Attack

So here’s how we’re going to approach the build:

1. First we’ll set up our WordPress installation with
categories and some sample Portfolio and Blog posts.
Finally, we’ll duplicate the blog theme and install it.

2. Then we’ll edit our single.php file to style up the new
portfolio items as well as blog posts depending on what
category a Post is in.

3. Then we’ll edit our homepage to match the Creatif
Portfolio style.

4. Then we’ll use the archive.php to cleverly make a
central Portfolio and Blog listing

5. And finally we’ll tidy up any remaining pages to get it
all finished!

Setting	up	WordPress

Because we are no longer building sites the way WordPress
expects us to by default, it is first necessary to set up WordPress
with the relevant content and settings, then when we do our
theming we’ll be able to see the fruits of our labour.

So grab a fresh copy of WordPress, or wipe the Posts and
categories out of a previous one, and follow these steps:

Building	an	Advanced	Theme:	Creatif	Portfolio2�8

Create	the	Category	Tree

1. Create two top level categories: Portfolio & Blog

2. Create a set of portfolio categories and make them all
children of the Portfolio category by setting Category
Parent to Portfolio. These categories might be for
example: Websites, Logos, and Business Cards.

3. Create a set of blog categories and make them all
children of the Blog category. These categories might
be for example: News and Off-Topic.

4. Finally note down the category ID numbers of the Blog
and Portfolio categories. You can find the ID of any
category by clicking Edit and looking at the URL you

Fig 7-1 – An example category tree.

Building	an	Advanced	Theme:	Creatif	Portfolio2�9

are taken to. In the URL string at the very end you will
see cat_ID=1 for example.

Note: In our example and this chapter we will assume that the
Blog category has a category ID of 1 and Portfolio category has a
category ID of 2.

Add	Sample	Posts

1. Create a few sample blog posts. You can do this just
as you would normally by clicking Posts > Add New,
writing a Post and then assigning them to the relevant
Blog sub-category.

2. Create a set of sample portfolio items. For each item
follow these steps:

a. Create a new Post and assign it to a Portfolio
sub-category

b. Give the portfolio item a title and description text

c. In the Excerpt section give the item a 2 line
summary. We’ll be using this for listings.

d. Create a set of images for the item in Photoshop.
You will need:

i. One 325px x 250px image for the homepage
when the item is featured.

ii. A set of matching thumbnail and large images
for the main page. Thumbnails should be sized
at 100px x 100px, and the main images should
be 600px wide and any height.

Building	an	Advanced	Theme:	Creatif	Portfolio2�0

e. Upload the images using WordPress’ regular image
uploader and note the URLs down

f. Add the image URLs in your Custom Fields section
as follows:

i. The homepage feature image should be stored
as large_preview (just as in the blog theme)

ii. Thumbnails should be stored as thumbnail_1,
thumbnail_2, etc.

iii. Main images should be stored as image_1,
image_2, etc.

Note that thumbnails and main images should of course match up
in terms of numbering.

Fig 7-2 – A post with Custom Fields housing images.

Building	an	Advanced	Theme:	Creatif	Portfolio2�1

Install	The	New	Theme

Now duplicate a copy of the Creatif Blog theme from Chapter 5 and
rename the new folder as Creatif_Portfolio. Next edit the comment
at the top of style.css to have the new theme name as well.

Finally install the Creatif Portfolio theme files and activate the theme
by going to Appearance > Themes and locating the theme and
selecting it.

You should now see the site looking pretty much the same as it did
in the last chapter. None of the clever images will be appearing. So
now we’re ready to start upgrading our theme!

Defining	Constants

Before we do anything else we’ll first define two constants to hold
the blog and portfolio category IDs. A constant is like a variable,
except it doesn’t change, also in PHP constants don’t need a $
sign in the name. They do however have to be defined. So open up
functions.php and add these lines at the bottom:

<?php

// Set the theme categories

define(‘BLOG’, 1);

define(‘PORTFOLIO’, 2);

?>

Once this is done we’ll be able to write BLOG or PORTFOLIO
anywhere and the two numbers will be substituted in, in their stead.
Note that the define function is by default case sensitive so you
have to keep the words in all capitals, this is a good idea anyway as
it helps ensure that your code is readable.

Building	an	Advanced	Theme:	Creatif	Portfolio2�2

This is really important because we are going to need to reference
those two numbers in about a dozen spots in the theme. So if
you were to try to instruct a new user to update all the spots
individually you are almost certain to have mistakes arise. Having
the information in only one place means there’s only spot where the
user can make a mistake when setting up the theme.

Showing	Both	Portfolio	and		
Blog	Items

So the first page we’re going to edit is single.php. We want to
upgrade our single Post page to display either blog posts just like
it always has, or our new portfolio items! How do we decide? Well
we’re going to need to figure out what category of item is being
displayed and then we’ll use an if/else statement to display the two
different layouts.

The code we need to insert at the top of the page (just after the
header include) is:

<?php

$category = get_the_category();

$parent = $category[0]->category_parent;

?>

To grab the category we are using the Template Tag get_the_
category() which you can read about at: http://codex.wordpress.
org/Template_Tags/get_the_category.

Because a Post can be a member of several Categories, get_the_
category() actually returns an array of results. So the variable
we are assigning the result to – $category – is an array. As you
know from basic PHP you can access an array’s contents using the
square bracket notation with the first item being at $category[0],
the second item at $category[1], and so on.

http://codex.wordpress.org/Template_Tags/get_the_category
http://codex.wordpress.org/Template_Tags/get_the_category

Building	an	Advanced	Theme:	Creatif	Portfolio2��

In our case we are only interested in the first category, so all we
want is $category[0]. Now each element in the array is actually
an object with a set of data representing the category. So we can
actually access a variety of different data using the -> notation:

• cat_ID

• cat_name

• category_nicename

• category_description

• category_parent

• category_count

In our case we are only interested in getting the parent category
because we want to know if it is either the Blog category or the
Portfolio category. So we store this value as $parent. What is
actually being stored is the ID number of the parent category.

So next we can place a big if/else statement to decide what Post
we’re showing, like this:

<?php get_header(); ?>

<?php

$category = get_the_category();

$parent = $category[0]->category_parent;

?>

<?php if (in_category(BLOG) || $parent == BLOG): ?>

... Code to Display Blog Posts ...

<?php else: ?>

... Code to Display Portfolio item ...

<?php endif; ?>

<?php get_footer(); ?>

As you can see what we are saying here is if the Post is in the
category with ID equivalent to BLOG, or if its parent category has
ID equivalent to BLOG, then the Post must be a blog post.

Building	an	Advanced	Theme:	Creatif	Portfolio2��

Remember that BLOG is the constant we set to be the category ID
of the Blog category.

Otherwise it must be a portfolio item. Note the use of in_category
which is a Conditional Tag like those we covered at in Chapter
4. Also note that || means or, so that part of the if is executed
if either of the two statements resolves to true. Another logical
operator we’ve been using is && which means and, so if we used
that instead the if statement would only execute that block if both
statements resolved to true.

So in the first section – the part for blog posts – we can simply
use our regular code from the old Creatif Blog single.php. It’s the
other section that is going to need some new code to grab all those
images and thumbnails.

Displaying	Portfolio	Items

Now a portfolio item is the same as a regular blog post, so we can
again duplicate the same blog post code and paste it into the else
section. Then make the following changes:

Delete Comments

We no longer need to have a section for comments, so we can
delete the code that goes:

<div id=”comments_template”>

 <?php comments_template(); ?>

</div>

Note that you could of course keep comments on portfolio items if
you wished!

Building	an	Advanced	Theme:	Creatif	Portfolio2�5

Remove the Post Time and Author

It doesn’t seem very relevant to say what time the item was added,
or who the author was. So we’ll change this line:

<small>on <?php the_time(‘M d’); ?> in <?php the_

category(‘, ‘); ?> tagged <?php the_tags(‘’); ?> by <?php

the_author_posts_link(); ?></small>

to:

<small> in <?php the_category(‘, ‘); ?> tagged <?php the_

tags(‘’); ?></small>

Add the Images to the Page

Before the heading and Post text we’ll paste in all our images and
thumbnails. After that we’ll add in the Javascript to make them
switch. So first let’s add the main images:

<div class=”portfolio_main”>

... Add images here ...

</div>

First, as you recall the code to grab the value of the Custom Field
titled image_1 is:

get_post_meta($post->ID, ‘image_1’, true);

In our case however we (may) have a bunch of images to show.
We’re not really sure how many, but in our example we’re going
to assume there is less than 10. You could actually work out how
many Custom Fields have been entered, but the PHP starts looking
pretty confusing, so it’s a lot simpler to just make an assumption
that no portfolio item is every going to have bazillions of images!

Building	an	Advanced	Theme:	Creatif	Portfolio2�6

So therefore we can make a loop to flick to go through and output
image_1 up to image_10:

<div class=”portfolio_main”>

<?php

 for ($i=1; $i<=10; $i++) {

 $image = get_post_meta($post->ID, ‘image_’.$i, true);

 echo “”;

 }

?>

</div>

Here we’re creating a variable called $i and looping through
10 times, each time substituting $i for the number in our Custom
Field key using the . operator to stick the two bits together:
‘image_’ . $i

Then we echo a regular HTML tag. Note that we give
each one an id so that we can use Javascript later to show and
hide them.

But what if there is no image_10, or image_9, or any images for that
matter? We certainly don’t want to be outputting a whole bunch of
broken images. So we’ll update our code like this:

if ($image) {

 echo “”;

}

If you’re new to PHP you might be thinking that our if statement
isn’t really saying anything right? Normally you would be comparing
something using an == or a > or so on. But actually if statements
are just checking to see if the thing in the brackets boils down
to true or false. So if you have an if(a==b) statement, PHP is
actually saying does a==b = true? Now in our case we saying
if($image), so PHP is evaluating whether $image = true. If

Building	an	Advanced	Theme:	Creatif	Portfolio2�7

$image is an empty variable then it will evaluate to false, and if it
has anything else in it, it will evaluate to true. So what we’re really
saying here is if $image exists!

Now there are two more important things we need to do to get
ready for our Javascript to show/hide these images. First if it’s not
the first we need to add a style=”display:none” to the
tag. This will ensure only the very first image is actually showing to
begin with. Then we can let the user control what is shown
and hidden.

The second thing we need to do is figure out exactly how many
images are going to be present all together, then we can give our
Javascript this value later. So our final code will look like this:

<div class=”portfolio_main”>

<?php

 $number_of_images = 0;

 for ($i=1; $i<=10; $i++) {

 $image = get_post_meta($post->ID, ‘image_’.$i,

true);

 if ($image && $i == 1) {

 echo “<img src=’”.$image.”’ id=’image_

”.$i.”’>”;

 $number_of_image++;

 } elseif ($image) {

 echo “<img src=’”.$image.”’ id=’image_”.$i.”’

style=’display:none;’>”;

 $number_of_images++;

 }

 }

?>

</div>

We are first creating a variable called $number_of_images and
making it 0. Then we’ll increment this number each time we find

Building	an	Advanced	Theme:	Creatif	Portfolio2�8

ourselves an image. Next we update our if/else statement to first
check if both $image exists and $i is equal to 1. If that’s not true,
we’ll also check elseif just $image exists. Note that if we used
an else instead of an elseif we would be printing the tag
whether or not $image existed, because except for the first cycle of
the loop we’d always wind up in the else.

Add the Thumbnails to the Page

We can now add the thumbnail images and include on them links to
show and hide the main images, like this:

<div class=”portfolio_thumbs”>

<?php

 for ($i=1; $i<=$number_of_images; $i++) {

 $image = get_post_meta($post->ID, ‘thumbnail_’.$i, true);

 if ($image) {

 echo “<a href=’javascript:image_

switch(“.$i.”,”.$number_of_images.”);’><img

src=’”.$image.”’ id=’thumbnail_”.$i.”’>”;

 }

 }

?>

</div>

As you can see this is a similar loop to the one we used for the
main images. The only real difference is that this time we can just
use $number_of_images as the end point of the loop, since we
now have a value for it.

For each thumbnail image we are outputting the image with an
attached link that activates some Javascript to show/hide the
related main image. The Javascript itself can be placed into a js file
called image_switch.js, here’s the simple code we need:

Building	an	Advanced	Theme:	Creatif	Portfolio2�9
function image_switch(active, number) {

 for (var i=1; i < number+1; i++) {

 document.getElementById(‘image_’+i).style.

display = ‘none’;

 }

 document.getElementById(‘image_’+active).style.display

= ‘block’;

}

And this file should be inserted into the header.php by adding
this line:

<script type=”text/javascript” src=”<?php

bloginfo(‘template_directory’); ?>/scripts/image_switch.

js”></script>

So the Javascript is pretty simple, it just loops through all the
images and first sets them all to style=”display:none”, then
finds the active one and sets it to style=”display:block”. The
two variables we need to pass it are active which is the image
number that should be shown, and number which is the number
of elements to loop through. Back in our PHP these are $i and
$number_of_images respectively.

Fig 7-3 – An example portfolio item.

Building	an	Advanced	Theme:	Creatif	Portfolio250

Making	Multiple	Sidebars

If you view your WordPress installation now in a browser and open
up either a portfolio item or a blog post you will find there is one
major problem we have yet to deal with – the sidebar is the same
in both cases and the blog and portfolio categories are all mixed in
together. It would make a lot more sense to have different sidebars
for the blog and for the portfolio. This is easy to do, just duplicate
the sidebar.php file and call the duplicate sidebar-blog.php.

We can then make use of a neat extra parameter of the get_
sidebar() function to write get_sidebar(‘blog’) and it will
automatically include sidebar-blog.php. So in single.php in the
first if/else block – the one for the blog, just substitute in the new
command, and leave the portfolio sidebar as is. We’ll make the
default sidebar.php the portfolio sidebar since that is the main
purpose of the site.

Blog	Sidebar

Substitute the contents of sidebar-blog.php with this code:

<div id=”sidebar”>

 <img src=”<?php bloginfo(‘template_directory’); ?>/

images/ribbon_browse.png” class=”ribbon” alt=”Browse

Blog”/>

 <div class=”block_inside”>

 <li id=”search” class=”widget”><h3>Search</h3>

 <?php include(TEMPLATEPATH.’/searchform.

php’); ?>

 <li id=”subscribe” class=”widget”><h3>Subscribe

</h3>

Building	an	Advanced	Theme:	Creatif	Portfolio251

 <a href=”<?php bloginfo(‘rss2_

url’); ?>”>RSS Feed

 <a href=”http://feedburner.google.

com/fb/a/mailverify?uri=psdtuts”>Email Updates

 <a href=”http://feeds.feedburner.

com/psdtuts”><img style=”border:0” src=”http://feeds.

feedburner.com/~fc/psdtuts?bg=a6a2a0&fg=ffffff&anim

=0” alt=”” width=”88” height=”26” />

 <li id=”categories” class=”widget” ><h3>Blog

Categories</h3>

 <?php wp_list_categories(‘title_

li=&orderby=name&child_of=’.BLOG); ?>

 </div>

 </div>

The sidebar is similar to the one used in the Creatif Blog theme,
though we’ve removed widgetization. The one real difference
here is that the categories section is now just Blog Categories. To
display only those categories that are a parent of the Blog Posts
category we’ve added the child_of parameter and used the
constant BLOG we defined in functions.php:

wp_list_categories(‘title_li=&orderby=name&child_of=’.BLOG);

Portfolio	Sidebar

The portfolio sidebar can be virtually identical, only we need to
substitute the child_of value for the category ID of Portfolio,

http://feedburner.google.com/fb/a/mailverify?uri=psdtuts
http://feedburner.google.com/fb/a/mailverify?uri=psdtuts
http://feeds.feedburner.com/psdtuts
http://feeds.feedburner.com/psdtuts
http://feeds.feedburner.com/~fc/psdtuts?bg=a6a2a0&fg=ffffff&anim=0
http://feeds.feedburner.com/~fc/psdtuts?bg=a6a2a0&fg=ffffff&anim=0
http://feeds.feedburner.com/~fc/psdtuts?bg=a6a2a0&fg=ffffff&anim=0

Building	an	Advanced	Theme:	Creatif	Portfolio252

which of course is stored in the PORTFOLIO constant. We will also
get rid of the subscription part since that seems a little unrelated.
So we’re left with:

<div id=”sidebar”>

 <img src=”<?php bloginfo(‘template_directory’);

?>/images/ribbon_browse_portfolio.png” class=”ribbon”

alt=”Featured Project”/>

 <div class=”block_inside”>

 <li id=”search” class=”widget”><h3>Search</h3>

 <?php include(TEMPLATEPATH.’/searchform.

php’); ?>

 <li id=”categories” class=”widget”

style=”padding-top:15px;”><h3>Portfolio Categories</h3>

 <?php wp_list_categories(‘title_

li=&orderby=name&child_of=’.PORTFOLIO); ?>

 </div>

 </div>

As you can see the only other changes are to the ribbon image and
the words Portfolio Categories.

Home	Sidebar

There is one final sidebar we need, this one for the homepage
where there is just some text content. So create a new file called
sidebar-home.php and enter in this code:

Building	an	Advanced	Theme:	Creatif	Portfolio25�
<div id=”text_column”>

<h2 id=”text_title”>Creatif is a WordPress portfolio theme

for designers and creatives</h2>

 <p>You can use it to quickly turn WordPress into a

portfolio website. Not familiar with WordPress? Fear

not, the theme accompanies a book called <a href=”http://

rockablepress.com”>How to Be a Rockstar Wordpress

Designer by Rockable Press.</p>

 <p>The book teaches you to use WordPress theming to

take advantage of this flexible CMS product to create

dynamic sites.</p>

 <p>And as if that’s not enough, you can see a photoshop

to HTML tutorial on designing the theme over at PSDTUTS and <a href=”http://

nettuts.com”>NETTUTS.</p>

</div>

We’ll make use of this sidebar in the next section!

Updating	the	Homepage

So that brings us to our index.php file and its includes. On this
page we need to update how the Posts are displayed, add the new
sidebar and clean up a few left-overs from the blog theme.

The	Featured	Post

Starting with our featured Post area, open up featuredpost.php
and make the following changes.

Only Feature Portfolio Items

Currently our theme will feature the first item to come along. We
need to make sure we’re only featuring portfolio items. We can do

http://rockablepress.com
http://rockablepress.com
http://psdtuts.com
http://nettuts.com
http://nettuts.com

Building	an	Advanced	Theme:	Creatif	Portfolio25�

this by excluding the Blog category and all its children from our
query like this:

$featured->query(‘showposts=1&cat=-’.BLOG);

As you can see we’ve effectively added cat=-1 which excludes
the category with ID 1, though of course we don’t actually write
the number in, we use that handy constant BLOG that we
defined previously.

Update for Portfolio Items

Next we’ll switch the ribbon image to ribbon_featured.png so
that it says featured project rather than featured post. Then also
we’ll remove the date and author from the project to leave:

<small>in <?php the_category(‘, ‘); ?> tagged <?php the_

tags(‘’); ?></small>

The	Index	Page

Going back to index.php we can quickly amend the sidebar
include from plain old get_sidebar() to get_sidebar(‘home’) to
switch over to the sidebar-home.php file that we created earlier.

Then we also need to change the area of the page that was
previously just displaying our Posts to only display a select number
of portfolio items.

So change the <div id=”block_content”> to read <div
id=”block_portfolio”> and then delete everything in the <div
id=”content_area” class=”block”></div> segment and replace
in this code:

Building	an	Advanced	Theme:	Creatif	Portfolio255
<div id=”portfolio_items”>

 <?php query_posts(“cat=-”.BLOG.”&showposts=4”); //

First we remove the Blog Posts category ?>

 <?php $first = true; ?>

 <?php if(have_posts()) : while(have_posts()) :

the_post(); ?>

 <? if ($post->ID != $featured_ID) { ?>

 <div class=”mini_portfolio_item”>

 <? if ($first) {?>

 <img src=”<?php bloginfo(‘template_

directory’); ?>/images/ribbon_recent.png” class=”ribbon”

alt=”Recent Projects”/>

 <? }

 $first = false;

 ?>

 <div class=”block_inside”>

 <a href=”<?php the_permalink();

?>”><img src=”<?php echo get_post_meta($post->ID,

‘thumbnail_1’, true); ?>” class=”thumbnail” alt=”” />

 <h3><a href=”<?php the_permalink();

?>” title=”<?php the_title(); ?>”><?php the_title(); ?>

</h3>

 <?php the_excerpt(‘
View

Project’); ?>

 </div>

 </div>

 <? } ?>

 <?php endwhile ?>

 <?php else : ?>

 <h2 class=”center”>Not Found</h2>

 <p class=”center”>Sorry, but you are looking

for something that isn’t here.</p>

 <?php include (TEMPLATEPATH . ‘/searchform.

php’); ?>

 <?php endif; ?>

</div>

Building	an	Advanced	Theme:	Creatif	Portfolio256

So here we’ve made a few changes to the old code:

1. We’ve changed the query to exclude blog posts and
only display four items. By amending query_posts()
to query_posts(“cat=-”.BLOG.”&showposts=4”); we
remove all items from category ID BLOG and we limit the
query to only four items.

2. We’re only showing the ribbon image on the first item.
By creating a variable called $first and setting it to
true, we can use an if statement to figure out if this is
the first portfolio item or not. This is important because
otherwise we’d be repeating the ribbon image which
would look strange.

3. Next we’ve substituted in the amended HTML
code from our portfolio.html file from back in
Chapter 3. This code requires a thumbnail image so
we grab the item’s first thumbnail image using the same
old Custom Field code as we’ve been using on the
single.php page.

4. Finally because we only want a one or two line
description we’ve used the_excerpt() Template
Tag instead of the_content(). This forces WordPress
to grab those short excerpts we added when creating
the Posts.

Creating	Listing	Pages

When a person arrives at our site we need a page where they can
find all the portfolio items and another page where they can find all
the blog posts. Then we can make our main menu go something
like this: Home | Portfolio | Blog | Other Pages.

Building	an	Advanced	Theme:	Creatif	Portfolio257

We could create a special Page Template and use WP_Query to grab
specific types of Posts, but in our case we can actually simplify our
theme a lot and just use the archive.php file to do everything!

As you recall archive.php is the template file used for category
archives, author archives, tag archives and date archives. In our
case it is the category archives that we are interested in. If we can
make an archive that displays the Blog category and the Portfolio
categories differently, we can use the respective category lists as
our listing pages. So the list of everything in the Blog category is
the blog, and similarly with the portfolio.

Figuring	Out	What	Category	is	Displaying

As we did with our single.php file before, the first step is to
figure out what category of Posts we’re dealing with. The code
we need is:

<?php

 $catid = get_query_var(‘cat’);

 $cat = &get_category($catid);

 $parent = $cat->category_parent;

?>

So here we are grabbing the variable cat out of the URL string,
this corresponds to the category ID number and from there we can
work backwards to get the parent ID just as we did in single.php.

Then all we need is another big if/else statement, just as we had in
single.php:

<?php get_header(); ?>

<?php

$catid = get_query_var(‘cat’);

$cat = &get_category($catid);

Building	an	Advanced	Theme:	Creatif	Portfolio258
$parent = $cat->category_parent;

?>

<?php if (is_category(BLOG) || $parent == BLOG):?>

... Format for blog posts

<?php else: ?>

... Format for portfolio posts

<?php endif;?>

<?php get_footer(); ?>

The only difference that we have is that instead of in_category()
which was necessary for our single Post, we have is_category().

Listing	Posts

To format and list the two types of Posts is easy. For blog posts we
can use our standard blog post formatting:

<div id=”block_content”>

 <div id=”content_area” class=”block”>

 <div class=”block_inside”>

 <?php if(have_posts()) : while(have_

posts()) : the_post(); ?>

 <h2><a href=”<?php the_permalink();

?>” title=”<?php the_title(); ?>”><?php the_title(); ?></

a></h2>

 <small>on <?php the_time(‘M d’); ?>

in <?php the_category(‘, ‘); ?></small>

 <?php the_excerpt(); ?>

 <div class=”separator”></div>

 <?php endwhile ?>

 <div id=”posts_navigation”>

 <?php previous_posts_link(); ?>

 <?php next_posts_link(); ?>

 </div>

 <?php else : ?>

Building	an	Advanced	Theme:	Creatif	Portfolio259
 <h2 class=”center”>Not Found</h2>

 <p class=”center”>Sorry, but you

are looking for something that isn’t here.</p>

 <?php include (TEMPLATEPATH . ‘/

searchform.php’); ?>

 <?php endif; ?>

 </div>

 </div>

 <?php get_sidebar(‘blog’); ?>

 <!-- a Clearing DIV to clear the DIV’s because

overflow:auto doesn’t work here -->

 <div style=”clear:both”></div>

 </div>

 </div>

</div>

And for portfolio items we’ll use the same sort of formatting we
have on the homepage:

<div id=”block_portfolio”>

 <div id=”portfolio_items”>

 <?php if(have_posts()) : while(have_

posts()) : the_post(); ?>

 <div class=”mini_portfolio_item”>

 <div class=”block_inside”>

 <a href=”<?php the_

permalink(); ?>”><img src=”<?php echo get_post_meta($post-

>ID, ‘thumbnail_1’, true); ?>” class=”thumbnail” alt=””

/>

 <h3><a href=”<?php the_

permalink(); ?>” title=”<?php the_title(); ?>”><?php the_

title(); ?></h3>

 <?php the_excerpt(‘
View Project’); ?>

 </div>

 </div>

Building	an	Advanced	Theme:	Creatif	Portfolio260
 <?php endwhile ?>

 <div id=”posts_navigation”>

 <?php previous_posts_link(); ?>

 <?php next_posts_link(); ?>

 </div>

 <?php else : ?>

 <h2 class=”center”>Not Found</h2>

 <p class=”center”>Sorry, but you are

looking for something that isn’t here.</p>

 <?php include (TEMPLATEPATH . ‘/

searchform.php’); ?>

 <?php endif; ?>

 </div>

 <?php get_sidebar(); ?>

 <!-- a Clearing DIV to clear the DIV’s because

overflow:auto doesn’t work here -->

 <div style=”clear:both”></div>

 </div>

 </div>

</div>

Adding	a	Breadcrumb	Trail

The only problem left is that it’s not clear what page we are actually
showing because there’s no heading. What we’ll do instead is
manufacture a little breadcrumb trail that will let the user see what
category they are browsing, and if it’s a subcategory of Blog or
Portfolio to list the parent category too. We insert this code just
before the main if/else statement:

<div style=”padding-bottom:5px;”>

<?php if($parent == BLOG): ?>

 <a href=”<?php bloginfo(‘url’); ?>”>Home >

<a href=”<?php bloginfo(‘url’); ?>/category/blog”>Blog

> <?php wp_title(‘ ‘, true, ‘’); ?>

Building	an	Advanced	Theme:	Creatif	Portfolio261
<? elseif($parent == PORTFOLIO): ?>

 <a href=”<?php bloginfo(‘url’); ?>”>Home</

a> > <a href=”<?php bloginfo(‘url’); ?>/category/

portfolio”>Portfolio > <?php wp_title(‘ ‘, true, ‘’);

?>

<? else: ?>

 <a href=”<?php bloginfo(‘url’); ?>”>Home >

<?php wp_title(‘ ‘, true, ‘’); ?>

<? endif; ?>

</div>

Here we are first checking if the parent category is BLOG. If
that’s the case we’ll output Home > Blog > Title – using wp_
title for the final part. Note that we are using a permalink to the
Blog category. If permalinks had not been switched on we’d need
to use <?php bloginfo(‘url’); ?>/?cat=1 which goes to the
same place.

Fig 7-4 – The portfolio listing page with breadcrumb trail.

Building	an	Advanced	Theme:	Creatif	Portfolio262

The next part of the if statement checks if the parent category
is PORTFOLIO, in which case we do something similar: Home >
Portfolio > Title. Finally if neither is true we just display
Home > Title.

Adding	Links	to	the	Menu

The last thing we need to do for our listing pages is add them
manually to the menu. To do this open up header.php and edit the
menu section to become:

<ul id=”menu”>

 <a href=”<?php bloginfo(‘url’); ?>”

title=”Home”>Home

 <a href=”<?php bloginfo(‘url’); ?>/category/

portfolio/”>Portfolio

 <a href=”<?php bloginfo(‘url’); ?>/category/blog/

”>Blog

 <?php wp_list_pages(‘title_li=’); ?>

As you can see we’ve added two permalinks in after Home, then
followed it up with any Pages the user may have created.

Tying	Loose	Ends

With the homepage, single Page and archives all sorted, we’re
pretty much finished with our theme. A few loose ends that need to
be tied are:

1. Clean Up Wording
You may wish to tidy up a few pages to swap blog
references in the text for more portfolio-centric
references, for example instead of “posts” you might
like to say “items” and so on.

Building	an	Advanced	Theme:	Creatif	Portfolio26�

2. Switch RSS feeds
The default RSS feed is for the whole site (including
portfolio items) however if you only want RSS to cover
the blog posts, this is easily done because you can
create an RSS feed for any category. So if the blog sits
at: http://example.com/category/blog/ then the feed will
be at: http://example.com/category/blog/feed.

3. Remove Unused Theme Files
There are a few files from Creatif Blog that we don’t
need anymore, specifically: author.php, category.php
and completearchives.php.

4. Update the Screenshot!

Wrap	Up	of	Creatif	Portfolio

In this chapter we have gone through a concrete example of
repurposing WordPress functionality to produce a different type
of site. And importantly we did it while keeping a blog present. In
Chapter 9 you’ll find lots of other ideas for repurposing WordPress
that all rely on the same basic principles – rethink the Post and use
Custom Fields for extra information.

In this chapter we used category templates to make our listing
pages. As mentioned previously another method to do the same
thing is to use Page Templates – though this requires some extra
code hacking. There is in fact yet a third method using one of
WordPress’ Settings to change what template is used for the
homepage. We’ll cover this method in the next chapter.

We’ll also look at another way of extending WordPress using not
Posts, but Pages and sub-Pages. This format suits many client and
business applications where content is mostly static but still needs
to be content managed.

http://example.com/category/blog/
http://example.com/category/blog/feed

Building	a	Site	Theme:	
Creatif	Site
Up until now we have focused heavily on WordPress’
Post functionality. In this chapter we’ll build a theme
that puts the emphasis on Pages and sub-Pages
to build a more traditional content managed site,
similar to what many business clients ask for. In this
context we can still make use of Posts to add time-
dependent content such as news, press releases or
of course a blog, but the focus will be on the Page
structure. In this way, with a bit of training WordPress
can be used as a content management system for a
huge array of client projects!

Building	a	Site	Theme:	Creatif	Site266

Making	a	Plan

Again before we get started with the build, we’ll plan out how the
site should be constructed. In this case we want to have:

1. A custom homepage with a featured section and
three subsections.

2. A set of top level Pages, each of which can have
unlimited sub-Pages.

3. On each of the top level Pages we’ll have a special
graphic header while the sub-Pages will simply have a
regular text heading.

4. A “news” section with the latest three news items
appearing on the homepage.

Custom	Homepage

Unlike the blog and portfolio themes we covered previously the
homepage of our Creatif Site theme can’t just rely on the latest Post
content. Instead we need to have several images and bits unrelated
to either Posts or Pages, that the client can keep updated. To
achieve this result we will make use of WordPress Theme Options.

We’ll also have a small section on the page to show the latest three
news items, this can be piped in easily using WP_Query.

Building	a	Site	Theme:	Creatif	Site267

Pages	and	Sub-Pages

WordPress makes it easy to create a hierarchy of Pages by
assigning a Page parent to new Pages. We can then put together
some code that figures out what submenu to show in the sidebar
based on the Page currently showing.

Because Pages can make use of Custom Fields just like Posts, we
can easily add images for our top level Pages just as we did in our
Creatif Portfolio theme.

The	News	Section

In Chapter 7 we used a category archive template to create a blog
listing page. This technique could just as easily be applied again
here, but instead we’ll demonstrate another method for achieving
the same result. This time we will use WordPress’ Settings to switch
what page is used for blog listing and what page is used for the
homepage, enabling us to use our regular index.php file for the
news page.

Setting	up	WordPress

Again the first step is to setup our WordPress installation with the
right Pages, Posts and Theme Options. Then we can theme around
our content to get it all working as we want.

So grab a fresh copy of WordPress, or wipe the posts and
categories out of a previous one, and follow these steps:

Building	a	Site	Theme:	Creatif	Site268

Create	a	Set	of	Pages

1. First create a set of top level Pages, in our example we
have The Themes, The Book & About.

2. Next for each top level Page, add sub-Pages by
creating a new Page and setting its parent to the
relevant top level Page.

3. Then for each top level Page add a background header
image and a text blurb as Custom Fields with the keys
header_image and header_text.

4. Next create a Page called News. We will use this Page
for the Post listings of our news section.

Fig 8-1 – An example Page listing.

Building	a	Site	Theme:	Creatif	Site269

5. Next create a Page called Home. Later we will give this
Page a special Page Template to turn it into the custom
homepage.

6. You may also wish to go through and order the top
level Pages so that they will appear in the correct order
in the menu. To do this edit each Page and give it an
Order value starting at 1 for the first item (Home) and
going up from there.

Setup	the	Homepage	and	Listing	Page

With all our Pages created we can now setup the special homepage
and listing page setup we will be using. To do this go to Settings >
Reading in WordPress and in the section that says Front page
displays change the value from Your latest posts to A static page.

Fig 8-2 – The Settings > Reading screen.

Building	a	Site	Theme:	Creatif	Site270

Then set the Front page to Home and Posts page to News. These
are the two pages we created earlier for this very purpose. When
we begin our theming we will create a special Page Template for
Home and because we changed this setting the News page will
automatically use index.php.

Create	Some	News	Categories	and	Posts

1. Next create some Categories, in our example we have
WordPress News and Updates

2. Then create a few sample Posts and assign them to
each category.

3. For each Post, add just a title, text and short excerpt to
display on the homepage.

Install	The	New	Theme

Before we can add our Theme Options we need to actually install
the theme. So next duplicate a copy of the Creatif Blog theme
from Chapter 5 and rename the new folder as Creatif_Site. Next
edit the comment at the top of style.css to have the new theme
name as well.

Install the Creatif Site theme files and activate the theme by going
to Appearance > Themes and locating the theme and selecting it.

Add	Theme	Options	using	Theme	Toolkit

In Chapter 6 we looked at using the third party Theme Toolkit class
available from http://tinyurl.com/wp-theme-toolkit to add Theme
Options. We’ll now make use of this technique in a
concrete example.

http://tinyurl.com/wp-theme-toolkit

Building	a	Site	Theme:	Creatif	Site271

1. Download the functions.php and themetoolkit.php
files from the link above and add them to the Creatif_
Site theme (overwriting the old functions.php file)

2. All the settings you need to edit are inside functions.
php so open this file up and replace the example
settings with this code:

‘main_title’ => ‘Main Title ## The title of the main area

on the homepage.’,

‘main_image’ => ‘Main Image ## URL of the image on the

homepage, should be 400px wide x 250px high.’,

‘main_text’ => ‘Main Text ## The main text to go on the

homepage.’,

‘feature_1_title’ => ‘Featured Area 1 - Title ## The title

of this featured area on the homepage’,

‘feature_1_image’ => ‘Featured Area 1 - Image ## URL of the

image for this featured area on the homepage, should be

100px wide x 100px high.’,

‘feature_1_text’ => ‘Featured Area 1 - Text ## The text for

this featured area on the homepage.’,

‘feature_2_title’ => ‘Featured Area 2 - Title ## The title

of this featured area on the homepage’,

‘feature_2_image’ => ‘Featured Area 2 - Image ## URL of the

image for this featured area on the homepage, should be

100px wide x 100px high.’,

‘feature_2_text’ => ‘Featured Area 2 - Text ## The text for

this featured area on the homepage.’,

‘feature_3_title’ => ‘Featured Area 3 - Title ## The title

of this featured area on the homepage’,

‘feature_3_image’ => ‘Featured Area 3 - Image ## URL of the

image for this featured area on the homepage, should be

100px wide x 100px high.’,

Building	a	Site	Theme:	Creatif	Site272
‘feature_3_text’ => ‘Featured Area 3 - Text ## The text for

this featured area on the homepage.’

What we are doing here is creating a set of 12 fields that the user
will be able to edit to customize the homepage. We have an image /
title / text combo for the main area and three feature spots.

Add	Values	to	the	Theme	Options

With our functions.php file saved, you can now open up
WordPress and with the theme loaded you will have a new option
now available in the Appearance submenu, that reads Creatif Site. If
you click this option you will be shown a page listing all the Theme
Options you created in the previous step.

Note: Since WordPress 2.7 Theme Toolkit has lost some of its
formatting and looks a bit chaotic. You can make this page a little
more user friendly by editing the themetoolkit.php file. As a
start, find line 255 and add style=’width:600px’ to the <input
type=’text’ HTML. This will widen the input fields. You can apply
other HTML formatting, but be careful about what you edit and
always keep a backup.

Building	a	Site	Theme:	Creatif	Site27�

You can now go through and add sample data to the different
fields. The sample data we’ve used in our example theme can be
found by checking the homepage of the demo for this book at
http://superpreviewer.com/creatifsite.

Setting	up	the	Menu

With WordPress suitably setup with plenty of content we can now
start molding our theme into shape. We are again starting with
Chapter 5’s Creatif Blog theme and working from there.

So the first step is to open up header.php and modify the menu
code to:

<ul id=”menu”>

 <?php wp_list_pages(‘title_li=&depth=1’); ?>

Fig 8-3 – The ThemeToolkit Options page.

http://superpreviewer.com/creatifsite

Building	a	Site	Theme:	Creatif	Site27�

There are two changes here, firstly we’ve gotten rid of the link to
the homepage. This is no longer needed since we have literally
created a Page called Home. The second change is the addition
of depth=1. This parameter limits wp_list_pages() to only show
top level pages. By default the Template Tag will produce a nested,
unordered list including submenus.

Create	a	Home	Template

Next we need to setup a Page Template for the homepage. To do
this, simply duplicate index.php and call the new file site_home.
php. Then at the top of the file add the code below to turn it into a
Page Template named Site_Home.

<?php

/*

Template Name: Site_Home

*/

?>

Note: It’s important you don’t name the file home.php as that is a
special template file name, similar to index.php, sidebar.php and
so on. The file home.php would normally display on the homepage,
but because we have switched the homepage it will instead appear
in our news area confusing things.

You can now go back into the WordPress WP-Admin and edit the
Page called Home to set its Page Template to Site_Home. Once
that is done clicking on Home will be showing us the contents
of site_home.php, and clicking on News will be showing us the
contents of index.php. Of course at the moment those two pages
are identical, but we’ll change that shortly!

Building	a	Site	Theme:	Creatif	Site275

Showing	Submenus	and	Page	
Titles

Next we’ll turn our attention to the Pages themselves. Here we
need to display the relevant submenu, and amend the Page’s title
to either use the image we attached with our Custom Field or a
simple text title.

Sidebar	Submenus

Once a user clicks through to either a Page or sub-Page, we are
going to want the sidebar to display the top level menu item and
submenu for that section. To do so we need to first work out what
the top level or parent item is. If we are on the top level this is easy,
it’s simple the current Page. And if we are on a sub-Page then we
can use post_parent to find the top level Page ID:

<?php

 if ($post->post_parent != 0) {

 $parent = $post->post_parent;

 } else {

 $parent = $post->ID;

 }

 $parent_title = get_the_title($parent);

 $parent_link = get_permalink($parent);

?>

In this code segment we first check if the Page has a parent. If one
exists then the field $post->post_parent would be something
other than 0, in which case we record this value in the variable
$parent. Else, we can assume that the Page currently displaying is
the parent and we’ll just grab the current Page’s ID. Finally we use
the Template Tags get_the_title and get_permalink to work
backwards from the ID to grab the title and link for the parent Page.

Building	a	Site	Theme:	Creatif	Site276

We can now use our favorite Page listing Template Tag, making use
of the child_of parameter to do the rest of the work:

<li id=”subpages” class=”widget”>

 <h3>

 <?php echo (‘’ .

$parent_title . ‘’); ?>

 </h3>

 <?php wp_list_pages(‘title_li=&child_of=’.$parent); ?>

The only other thing we need in sidebar.php is a search box,
so removing everything else our final sidebar.php code looks
like this:

 <div id=”sidebar”>

 <img src=”<?php bloginfo(‘template_directory’); ?>/

images/ribbon_navigation.png” class=”ribbon” alt=”Featured

Project”/>

 <div class=”block_inside”>

 <?php

 if ($post->post_parent != 0) {

 $parent = $post->post_parent;

 } else {

 $parent = $post->ID;

 }

 $parent_title = get_the_title($post->post_

parent);

 ?>

 <li id=”subpages” class=”widget”>

 <h3>

 <?php echo (‘<a href=”’.get_

Building	a	Site	Theme:	Creatif	Site277
permalink($post->post_parent).’”>’ . $parent_title . ‘</

a>’); ?>

 </h3>

 <?php wp_list_pages(‘title_li=&child_

of=’.$parent); ?>

 <li id=”search” class=”widget”><h3>Search</h3>

 <?php include(TEMPLATEPATH.’/searchform.

php’); ?>

 </div>

 </div>

Page	Titles

Next open up page.php and find the line that outputs our
heading text:

<h2><a href=”<?php the_permalink(); ?>” title=”<?php the_

title(); ?>”><?php the_title(); ?></h2>

We are going to run a combination of if/else statements to change
the heading in a selection of different ways:

1. If the Page is a sub-Page, then we will output the top
level menu item just above the heading.

2. If the Page is a top level Page, then we will see if there
is a header image and text set in our Custom Fields. If
they are there we’ll use those as the heading.

Building	a	Site	Theme:	Creatif	Site278

3. If there is no header image or text, then we’ll revert
back to the basic heading text.

So to achieve this we need two if/else statements nested inside
each other. Here’s the first of them:

<?php if ($post->post_parent != 0) {

 $parent = $post->post_parent;

 $parent_title = get_the_title($parent);

 $parent_link = get_permalink($parent);

 echo (‘<h4>’ .

$parent_title . ‘</h4>’); ?>

 <h2><a href=”<?php the_permalink(); ?>”

title=”<?php the_title(); ?>”><?php the_title(); ?></

h2>

<? } else { ?>

 ... Code for top level menu item

<? } ?>

As we did earlier we are checking if a parent exists, if it does then
we’ll grab the details and output them wrapped in an <h4> tag. The
else part is as follows:

 <? } else {

 $header_image = get_post_meta($post->ID, ‘header_

image’, true);

 $header_text = get_post_meta($post->ID, ‘header_text’,

true);

 if ($header_image && $header_text) { ?>

 <div style=”background-image:url(<? echo $header_

image ?>);” class=”header_image”>

Building	a	Site	Theme:	Creatif	Site279
 <? echo $header_text ?>

 </div>

 <?php } else { ?>

 <h2><a href=”<?php the_permalink(); ?>”

title=”<?php the_title(); ?>”><?php the_title(); ?></h2>

 <?php } ?>

<? } ?>

This time we grab the two Custom Fields we set up earlier –
header_image and header_text and assign them to variables.
Then we check that both are present, and if so we display a
<div> that uses the image as a background and places the text
on top. We’ve also added a new CSS class header_image to our
style.css file:

Fig 8-4 – Custom header image and sidebar menu in action.

Building	a	Site	Theme:	Creatif	Site280
#content_area .header_image {

 background-repeat:no-repeat;

 padding:90px 200px 50px 40px;

 color:#9dc5e9;

}

This CSS code simply sets the text color to a light blue to match
the example header image being used, and adds padding to place
the text in the right spot.

If either Custom Field is not present then we fall back on the regular
<h2> title. And with that our page.php is complete!

Creating	the	News	Section

With our Pages sorted, we’ll turn our attention to the news section.
This is basically a little blog and as you will recall we have set
things up so that when a user clicks News in the menu they will be
served up content packaged in the index.php template file. So our
first stop is to edit that file to display a simple blog listing.

Updating	Index.php

The main update we need to make is to remove the featured Post
section that has been ported over from Creatif Blog. To do this,
simply remove these bits of code:

<?php if(is_home()){ include(TEMPLATEPATH.’/

featuredpost.php’); } ?>

<? if ($post->ID != $featured_ID) { ?> and <? } ?> (but
not what’s in between!)

Building	a	Site	Theme:	Creatif	Site281

Also because we want a simpler looking news section, we’ll remove
the following code from the Post byline:

tagged <?php the_tags(‘’); ?> by <?php the_author_

posts_link(); ?>

Finally we need a new sidebar that caters to the blog. So replace
the get_sidebar() line with:

<?php get_sidebar(‘blog’); ?>

Adding	a	Blog	Sidebar

Next we duplicate the sidebar.php file and name the new copy
sidebar-blog.php. As you recall from Chapter 7, the get_
sidebar() function takes a special parameter that lets you include
multiple sidebar files using the parameter as the second half of
the filename.

In our new sidebar we can revert back to a simple variation of the
original sidebar from Creatif Blog:

<div id=”sidebar”>

 <img src=”<?php bloginfo(‘template_directory’); ?>/

images/ribbon_browse.png” class=”ribbon” alt=”Featured

Project”/>

 <div class=”block_inside”>

 <li id=”search” class=”widget”><h3>Search</h3>

 <?php include(TEMPLATEPATH.’/searchform.

php’); ?>

 <li id=”subscribe” class=”widget”><h3>Subscribe

</h3>

Building	a	Site	Theme:	Creatif	Site282
 <a href=”<?php bloginfo(‘rss2_

url’); ?>”>RSS Feed

 <a href=”http://feedburner.google.

com/fb/a/mailverify?uri=creatif”>Email Updates

 <a href=”http://feeds.feedburner.

com/creatif”><img style=”border:0” src=”http://feeds.

feedburner.com/~fc/creatif?bg=a6a2a0&fg=ffffff&anim

=0” alt=”” width=”88” height=”26” />

 <li id=”recent_posts” class=”widget”><h3>Re

cent Posts</h3>

 <?php

 $recent = new WP_Query();

 $recent ->

query(‘showposts=7’);

 while($recent -> have_posts())

: $recent -> the_post();

 ?>

 <a href=”<?php the_

permalink(); ?>” title=”<?php the_title(); ?>”><?php the_

title(); ?>

 <?php endwhile; ?>

 <li id=”archives” class=”widget”><h3>Archives

</h3>

 <?php wp_get_archives(‘type=monthly

&limit=7’); ?>

 <li id=”categories” class=”widget”><h3>Cate

gories</h3>

 <?php wp_list_categories(‘title_

li=&orderby=name’); ?>

http://feedburner.google.com/fb/a/mailverify?uri=psdtuts
http://feedburner.google.com/fb/a/mailverify?uri=psdtuts
http://feeds.feedburner.com/psdtuts
http://feeds.feedburner.com/psdtuts
http://feeds.feedburner.com/~fc/psdtuts?bg=a6a2a0&fg=ffffff&anim=0
http://feeds.feedburner.com/~fc/psdtuts?bg=a6a2a0&fg=ffffff&anim=0
http://feeds.feedburner.com/~fc/psdtuts?bg=a6a2a0&fg=ffffff&anim=0

Building	a	Site	Theme:	Creatif	Site28�

 </div>

 </div>

Then there is one other place to update the sidebar. When a single
post is displayed we need the single.php file to also use the blog
version of our sidebar. So we’ll need to open up single.php and
replace get_sidebar() with the same get_sidebar(‘blog’) code.

The	Homepage

All that is now left is the homepage, for which we are going to use
the Theme Options we setup earlier. Open up the site_home.php
template file, and take the following steps:

Fig 8-5 – The Creatif Site homepage, based on the Creatif Portfolio styles.

Building	a	Site	Theme:	Creatif	Site28�

1. Replace the Featured Post include with the actual
code from the file featuredpost.php. Then delete the
old include. Having the code together will keep things
simpler in this theme.

2. Replace the get_sidebar() command with get_
sidebar(‘home’). Then create an empty file called
sidebar-home.php which we’ll fill in a moment.

3. Replace the main Post area with three of the portfolio
blocks from Chapter 7. We’ll use those portfolio styles
for our site homepage.

4. Finally replace all the images, titles and text with our
Theme Option values. The code to grab a particular
Theme Option is this:

<?php echo $mytheme->option[‘main_image’] ?>

Simply substitute main_image for the variable name set
in functions.php.

You should be left with this:

<?php

/*

Template Name: Site_Home

*/

?>

<?php get_header(); ?>

 <div id=”block_featuredblog” class=”block”>

 <img src=”<?php bloginfo(‘template_directory’);

?>/images/ribbon_salenow.png” class=”ribbon” alt=”On Sale

Now”/>

 <div class=”block_inside”>

 <div class=”image_block”>

Building	a	Site	Theme:	Creatif	Site285
 <img src=”<?php echo $mytheme-

>option[‘main_image’] ?>” alt=”Featured Post” />

 </div>

 <div class=”text_block”>

 <h2><?php echo $mytheme-

>option[‘main_title’] ?></h2>

 <?php echo $mytheme->option[‘main_

text’] ?>

 </div>

 </div>

 </div>

 <div id=”block_portfolio”>

 <div id=”portfolio_items”>

 <div class=”mini_portfolio_item”>

 <div class=”block_inside”>

 <img src=”<?php echo $mytheme-

>option[‘feature_1_image’] ?>” class=”thumbnail”/>

 <h3><?php echo $mytheme-

>option[‘feature_1_title’] ?></h3>

 <?php echo $mytheme-

>option[‘feature_1_text’] ?>

 </div>

 </div>

 <div class=”mini_portfolio_item”>

 <div class=”block_inside”>

 <img src=”<?php echo $mytheme-

>option[‘feature_2_image’] ?>” class=”thumbnail”/>

 <h3><?php echo $mytheme-

>option[‘feature_2_title’] ?></h3>

 <?php echo $mytheme-

>option[‘feature_2_text’] ?>

 </div>

 </div>

 <div class=”mini_portfolio_item”>

 <div class=”block_inside”>

 <img src=”<?php echo $mytheme-

Building	a	Site	Theme:	Creatif	Site286
>option[‘feature_3_image’] ?>” class=”thumbnail”/>

 <h3><?php echo $mytheme-

>option[‘feature_3_title’] ?></h3>

 <?php echo $mytheme-

>option[‘feature_3_text’] ?>

 </div>

 </div>

 </div>

 <?php get_sidebar(‘home’); ?>

 <!-- a Clearing DIV to clear the DIV’s

because overflow:auto doesn’t work here -->

 <div style=”clear:both”></div>

 </div>

 </div>

 </div>

<?php get_footer(); ?>

The	Home	Sidebar

Finally we need to setup a special sidebar that grabs the latest
news Posts. We can again use the styles from Creatif Portfolio and
a simple WP_Query() to loop through the three latest Posts. Here’s
the code to place inside sidebar-home.php:

<div id=”text_column”>

<h2 id=”text_title”>Latest News</h2>

 <div class=”separator”></div>

 <?php

 $recent = new WP_Query();

 $recent -> query(‘showposts=3’);

 while($recent -> have_posts()) : $recent -> the_

post();

 ?>

 <big><a href=”<?php the_permalink(); ?>”

title=”<?php the_title(); ?>”><?php the_title(); ?></big>

Building	a	Site	Theme:	Creatif	Site287
 <?php the_excerpt(); ?>

 <div class=”separator”></div>

 <?php endwhile; ?>

</div>

The WP_Query code is similar to code we’ve used in the Creatif
Blog sidebar. To make the styles work we need a new image for the
#text_title style, and then we also need a revised height variable.

Wrap	up	of	Creatif	Site

In this chapter we’ve seen how Pages and sub-Pages can be used
to manage a static site, how Theme Options can be used to create
a custom homepage and another method for adding a non-home
blog listing page using the WP-Admin Reading settings.

Theme	Options

In this book we’ve made us of ThemeToolkit to set our Theme
Options. This has the advantage that it makes the coding very
simple, but the options page itself leaves a little to be desired. If
you are interested in developing a custom options page you can
find a great tutorial at: http://blog.themeforest.net/wordpress/
create-an-options-page-for-your-wordpress-theme/

It requires some extra coding, but the end result is much more
flexible and you can customize a page that your client will have an
easier time with.

Plugins	for	CMS	Use

Using WordPress in this way to develop static sites is a common
business task, and as such there are a variety of plugins that you’ll
want to take a look at:

http://blog.themeforest.net/wordpress/create-an-options-page-for-your-wordpress-theme/
http://blog.themeforest.net/wordpress/create-an-options-page-for-your-wordpress-theme/

Building	a	Site	Theme:	Creatif	Site288

1. Adding Forms
There are many form plugins for WordPress.
One of the best-known and supported is CForms –
http://wordpress.org/extend/plugins/cforms/

2. Adding Newsletters
Clients love newsletters, and Subscribe2 –
 http://wordpress.org/extend/plugins/subscribe2/ –
is a popular plugin for adding this functionality
into WordPress.

3. Managing Multiple Clients
If you need to manage what users can do what in
WordPress – either because there are multiple client
users, or because you want to prevent your client from
touching certain settings, you’ll want Role Manager –
http://redalt.com/Resources/Plugins/Role+Manager

http://wordpress.org/extend/plugins/cforms/
http://wordpress.org/extend/plugins/subscribe2/
http://redalt.com/Resources/Plugins/Role+Manager

Innovative	Ways	to	Use	
WordPress
In this book we’ve walked through building a blog
theme, using WordPress to go out of the box and
create a portfolio and how to use WordPress as a
general site content management system.

Thanks to its flexible plugin and theming
architecture, WordPress is capable of much, much
more. In this final chapter, we’ll look at how you can
use WordPress to create a variety of different types
of sites and functionality. As you’ll see with a bit of
cleverness, the sky is the limit!

Innovative	Ways	to	Use	WordPress291

1.	WordPress	as	a	Membership		
Directory

A membership directory is a site that allows people to join, add
their details and then create some sort of membership listing. So
for example you might use WordPress to create a directory of
tourist activities and accommodation in a certain location. Then
small businesses could sign up, add their business details and
images and create a listing.

WordPress’ out of the box user management is fairly sophisticated
and includes a solid login and registration system. To create the
membership pages you need to theme up a special author.php
layout (http://codex.wordpress.org/Author_Templates). You can
also add in special user fields using the WP-User-Manager plugin
(http://www.dealsway.net/2007/11/05/wp-user-manager/)

A great tutorial on building a membership directory, including
information on how to deal with privileges that authors have can be
found here: http://www.wpdesigner.com/2008/03/01/how-to-use-
wordpress-as-a-membership-directory/

2.	WordPress	as	an	E-Commerce	
Store

Add a shopping cart, integrate with PayPal or Authorize.net and sell
products using WordPress? Not as hard as you might think. Here
are three options for setting WordPress up as a store:

http://codex.wordpress.org/Author_Templates
http://www.dealsway.net/2007/11/05/wp-user-manager/
http://www.wpdesigner.com/2008/03/01/how-to-use-wordpress-as-a-membership-directory/
http://www.wpdesigner.com/2008/03/01/how-to-use-wordpress-as-a-membership-directory/

Innovative	Ways	to	Use	WordPress292

Use	a	Plugin:	

The most popular e-commerce plugin is definitely: http://
wordpress.org/extend/plugins/wp-e-commerce/ which is not only
free but includes PayPal integration and an AJAX shopping cart.

Use	a	Theme:

MarketTheme – http://www.markettheme.com – is a premium
theme (so you need to pay) that includes a large featureset for
creating an e-commerce store. Like all themes it’s customizable
with a bit of theming knowledge and all of the hard work of sales
integration is taken care of for you.

Use	a	Third	Party	Service:

E-Junkie – http://e-junkie.com – is a service that lets you sell
items from anywhere by pasting in a few lines of javascript. Create
a WordPress theme that turns Posts into product listings, Post
categories into product types and then add E-Junkie code to each
Post to let visitors buy products.

�.	WordPress	as	a	Premium	
Membership	Site

A premium membership site is one where visitors pay either
a subscription or one-off fee to access special members-only
content. WordPress can be used to build a premium membership
site in one of two ways:

http://wordpress.org/extend/plugins/wp-e-commerce/
http://wordpress.org/extend/plugins/wp-e-commerce/
http://www.markettheme.com
http://e-junkie.com

Innovative	Ways	to	Use	WordPress29�

Use	a	Plugin

There are several PayPal-integration plugins for WordPress that
allow you to add paid-for membership functionality, including:

http://wp-member.com/
http://tinyurl.com/easypaypal

These work by boosting the WordPress membership system to let
you create member’s only sections which can only be accessed
after a new member has paid for their account.

Use	a	Third	Party	Membership	System

Many popular membership systems have plugins to work with
WordPress. The best example is aMember (http://amember.com)
which can be easily integrated using a standard add-on (http://
www.amember.com/integration.php). The aMember software
then protects either the entire WordPress install or certain parts.
When a visitor joins aMember they automatically become a user
in the WordPress installation, however you have access to a host
more membership management features through the aMember
console. This means you can run voucher promotions, give out free
memberships, integrate with other systems and more.

�.	WordPress	as	a	Social	Media	
Feed	Aggregator

With all the many social services out there, there are two reasons why
you might want to make a feed aggregator. You might want to build
a popurls type service (http://popurls.com/) to display content from
popular feeds or alternatively you may simply want to aggregate all
your own feeds onto a single page as a type of homepage.

http://wp-member.com
http://tinyurl.com/easypaypal
http://amember.com
http://www.amember.com/integration.php
http://www.amember.com/integration.php
http://popurls.com

Innovative	Ways	to	Use	WordPress29�

Arguably the best PHP RSS aggregator plugin is SimplePie (http://
simplepie.org) and fortunately SimplePie have a freely available
WordPress plugin to help you get going: http://simplepie.org/wiki/
plugins/wordpress/simplepie_plugin_for_wordpress

Using SimplyPie you can create a theme that pipes through content
from any site that produces an RSS feed – in other words virtually
any modern web service.

While SimplePie is perfect for processing any type of feed, there
are also specialized plugins for specific types of feeds, for example:
FlickrRSS (http://eightface.com/wordpress/flickrrss/) will port in
photos, Smart YouTube (http://wordpress.org/extend/plugins/
smart-youtube/) will bring in videos, and Twitter for WordPress
(http://wordpress.org/extend/plugins/twitter-for-wordpress/)
will display your twitter feed. Search the plugins library (http://
wordpress.org/extend/plugins) for a specific service and chances
are there’s a plugin made specially for it.

If that seems like a lot of work, you could just customize ericulous’
OneNews WP Theme (http://ericulous.com/2007/06/11/popurls-
clone-using-wordpress/) that is a popurls clone right out of the box.

5.	WordPress	as	a	Musician/Band	
Website

There are several great plugins for turning WordPress into a
musician’s site. First grab Discography – http://wordpress.org/
extend/plugins/discography/ – which automatically creates a page
for every track and album you enter where fans can comment or
listen. Second add in a Gig calendar with http://wordpress.org/
extend/plugins/events-calendar/ and you can automate upcoming
gigs the band is playing and keep the fans informed. Using plugins
like FlickRSS (http://eightface.com/wordpress/flickrrss/) or Smart

http://simplepie.org
http://simplepie.org
http://simplepie.org/wiki/plugins/wordpress/simplepie_plugin_for_wordpress
http://simplepie.org/wiki/plugins/wordpress/simplepie_plugin_for_wordpress
http://eightface.com/wordpress/flickrrss/
http://wordpress.org/extend/plugins/smart-youtube/
http://wordpress.org/extend/plugins/smart-youtube/
http://wordpress.org/extend/plugins/twitter-for-wordpress/
http://wordpress.org/extend/plugins
http://wordpress.org/extend/plugins
http://ericulous.com/2007/06/11/popurls-clone-using-wordpress/
http://ericulous.com/2007/06/11/popurls-clone-using-wordpress/
http://wordpress.org/extend/plugins/discography/
http://wordpress.org/extend/plugins/discography/
http://wordpress.org/extend/plugins/events-calendar/
http://wordpress.org/extend/plugins/events-calendar/
http://eightface.com/wordpress/flickrrss/

Innovative	Ways	to	Use	WordPress295

YouTube (http://wordpress.org/extend/plugins/smart-youtube/) you
can port in images and videos to provide some visual goodness.
And of course with WordPress’ regular blogging and content
management abilities you have all the makings of a great band site.

6.	WordPress	as	a	Design	Gallery

Some very well known CSS galleries including BestWebGallery
(http://bestwebgallery.com/) are powered by WordPress. The basic
principle behind building a theme that acts as a design gallery is to
make your Posts into the gallery entries. So the Post title becomes
the entry name, the Post body becomes the entry’s description.
To add an image you use Custom Fields as we did in the Portfolio
theme. Using Custom Fields you can add all sorts of extra data
about the gallery entries and with a rating plugin or javascript add-
on like JS-Kit’s Rating service (http://js-kit.com/ratings/) you can
add user scores.

There are also plenty of Design Gallery themes out there that
you can grab and modify including: CSS-Gallery-Theme http://
themeforest.net/item/css-gallery-theme/19920 and Design
Showcase http://themeforest.net/item/design-showcase/19791

7.	WordPress	as	a	Podcasting	Site

WordPress is a great platform for creating a podcasting site
because all you really need is a way to post up your latest
podcasts. At its most basic you can simply place a link to each
podcast in a Post and be done with it. WordPress’ page on
Podcasting – http://codex.wordpress.org/Podcasting – explains
about setting up feeds so iTunes users can subscribe in a single
click. You might also want to look at using http://feedburner.com
services – be sure to click track enclosures so you can measure
your podcast downloads.

http://wordpress.org/extend/plugins/smart-youtube/
http://bestwebgallery.com
http://js-kit.com/ratings/
http://themeforest.net/item/css-gallery-theme/19920
http://themeforest.net/item/css-gallery-theme/19920
http://themeforest.net/item/design-showcase/19791
http://codex.wordpress.org/Podcasting
http://feedburner.com

Innovative	Ways	to	Use	WordPress296

The best known podcasting plugin is http://wordpress.org/extend/
plugins/podpress/ which adds a player to your page amongst other
things. But at the end of the day building a podcasting site is no
different to building a regular blog, you just need to add the actual
podcast files in.

8.	WordPress	as	a	Review	Site

Review sites can be tailored to virtually any niche from restaurant
reviews to electronics reviews. Creating a WordPress theme for
such a site is mainly a case of clever design (see the section
on Magazine themes below). Regular Posts can be used as the
editorial reviews and the addition of rating plugins like http://
wordpress.org/extend/plugins/gd-star-rating/ or JS-Kit’s Review
http://js-kit.com/reviews/ and Navigator http://js-kit.com/navigator/
widgets allows user interaction in the review process.

If you’re looking for a paid product to create a review site, go no
further than WPReviewSite – http://www.wpreviewsite.com/ which
adds some clever extra functionality like post sorting based
on rating.

9.	WordPress	as	a	Social	Network

Using	WPMU

If you really want to build a social network using WordPress you
should use WordPress Multi-User (WPMU) which is a fork of
the WordPress codebase and is what Automattic uses to create
WordPress.com. You can grab WPMU from http://mu.wordpress.org.

WPMU allows people to sign up and get their own WordPress blog
complete with themes and posts and everything else you know and
love about WordPress. Then there is one central account that lets

http://wordpress.org/extend/plugins/podpress/
http://wordpress.org/extend/plugins/podpress/
http://wordpress.org/extend/plugins/gd-star-rating/
http://wordpress.org/extend/plugins/gd-star-rating/
http://js-kit.com/reviews/
http://js-kit.com/navigator/
http://www.wpreviewsite.com
http://mu.wordpress.org

Innovative	Ways	to	Use	WordPress297

you control various settings for your users. Where’s the social part
of this you ask? Well, add in a forum like BBPress – http://bbpress.
org and a special set of WPMU plugins called BuddyPress – http://
buddypress.org/ and you have a social network. BuddyPress was
recently acquired by Automattic and gives WPMU a ton of new
functionality like messaging, profiles and more.

Also be sure to check out WPMU Dev Premium – http://premium.
wpmudev.org/ – and WPMU Dev – http://wpmudev.org/ – for lots of
plugins, themes and WPMU setup help.

Using	Plain	Ol’	WordPress

So what if you want to just use a regular WordPress install? Well
your options are a little more limited, but you can still do some neat
stuff. You’ll first want to boost up membership pages so that people
can join the site and get a profile page. For information on how to
do this, check out the section on building Membership Directories
at the start of this chapter.

Once you’ve got profile pages going, you’ll also want some sort
of communal forums. Automattic also produce BBPress which is
reasonably easy to integrate – http://bbpress.org/blog/2006/09/
simpler-integration-with-wordpress/ – but the forum itself isn’t that
developed yet, so you may have to hunt around on how to integrate
your favorite forum software with WordPress.

You might also want to check out Aleph – http://wordpress.org/
extend/plugins/el-aleph/ – a set of social network plugins that isn’t
very well supported, but looks promising.

http://bbpress.org
http://bbpress.org
http://buddypress.org
http://buddypress.org
http://premium.wpmudev.org
http://premium.wpmudev.org
http://wpmudev.org
http://bbpress.org/blog/2006/09/simpler-integration-with-wordpress/
http://bbpress.org/blog/2006/09/simpler-integration-with-wordpress/
http://wordpress.org/extend/plugins/el-aleph/
http://wordpress.org/extend/plugins/el-aleph/

Innovative	Ways	to	Use	WordPress298

10.	WordPress	as	a	Job	Board

Building a job board with WordPress from scratch is a reasonably
difficult task because you need to integrate with a payment system
like PayPal. Fortunately the work is done with a premium theme
from DailyWP called JobPress – http://www.dailywp.com/jobpress-
wordpress-theme/

JobPress is a decent looking theme with some solid payment
functionality, so if you’re not too keen on the regular look, just
re-theme it keeping the underlying PayPal integration and
Post structure.

11.	WordPress	as	a	Community	
News	Site

Blogs naturally build up a following of users who are often quite
willing to participate in the site by submitting news and posts.
Building a Community News engine into WordPress can be done in
one of two ways.

Community	Posting

Allowing anyone to submit a post isn’t too difficult. You’ll need to
set the default user type to Contributor rather than the not-able-to-
post Subscriber role, and then open up registrations. Contributors
can create Posts but not publish them, so as editor you’ll need to
approve which ones go up.

To fine tune exactly what your users can do and see you’ll want the
Role Manager plugin – http://www.im-web-gefunden.de/wordpress-
plugins/role-manager/ – which lets you specify exactly what
privileges your users have.

http://www.dailywp.com/jobpress-wordpress-theme/
http://www.dailywp.com/jobpress-wordpress-theme/
http://www.im-web-gefunden.de/wordpress-plugins/role-manager/
http://www.im-web-gefunden.de/wordpress-plugins/role-manager/

Innovative	Ways	to	Use	WordPress299

If you’re uncomfortable with letting just anyone register as a
Contributor, you can leave the default user type to be Subscriber
and then treat them as applications. If you approve a person you
simply manually update them to Contributors.

You can then add a simple rating system using JS-Kit’s Rating
widget – http://js-kit.com/ratings/ – which allows you to create
a Popular box using their Navigator widget – http://js-kit.com/
navigator/ – thus creating a lightweight voting system.

Community	Links

Another community news solution is to allow users to contribute
links to posts and sites for approval by the editor. This can be done
with the aid of a plugin – http://wordpress.org/extend/plugins/fv-
community-news/ – or simply by hacking up WordPress’ comment
feed – http://nettuts.com/working-with-cmss/hack-together-a-user-
contributed-link-feed-with-wordpress-comments/ – to work as a
link feed. These links can then be shown in the sidebar alongside
the regular site content.

12.	WordPress	as	a	Video	Portal

Setting up a video portal is not difficult simply because you can
use third part video sites like Vimeo and Blip.tv and then just use
WordPress posts to embed the videos in using the regular embed
code that such sites provide.

There are two premium theme companies that make some great
WordPress Video themes: Press75 – http://www.press75.com/ –
have a whole set of different video themes which not only are
feature packed but just look damn nice, while Quommunication –
http://quommunication.com/video/ – have just one video theme but
it’s so brilliant it’s all they need.

http://js-kit.com/ratings/
http://js-kit.com/navigator/
http://js-kit.com/navigator/
http://wordpress.org/extend/plugins/fv-community-news/
http://wordpress.org/extend/plugins/fv-community-news/
http://nettuts.com/working-with-cmss/hack-together-a-user-contributed-link-feed-with-wordpress-comments/
http://nettuts.com/working-with-cmss/hack-together-a-user-contributed-link-feed-with-wordpress-comments/
http://www.press75.com
http://quommunication.com/video/

Innovative	Ways	to	Use	WordPress�00

1�.	WordPress	as	a	Mobile	Site

Mobile phones are getting a lot of attention these days and
though their browsers are edging towards a conventional display
there’s a long way to go yet. WordPress makes a great engine for
building sites aimed at mobile users thanks to MobilePress – http://
mobilepress.co.za/ – a plugin that lets you develop a specifically
mobile version of your theme as well as to force certain types of
phone browsers (iPhone, Windows SmartPhone and Opera Mini) to
render the mobile version.

So how do you actually theme for mobile devices? Just like you’d
usually do – but of course with mobile constraints in mind. Here’s
a great article on developing for phones – http://www.webcredible.
co.uk/user-friendly-resources/web-usability/mobile-guidelines.shtml

1�.	WordPress	as	a	Freebie	
Aggregator

The web is full of great free stuff – from icons to programs to
scripts to photos. There’s so much that it’s hard to keep up, which
is why aggregator sites like Brusheezy – http://brusheezy.com or
QBrushes – http://qbrushes.com are extremely popular.

Building an aggregator site is easy with WordPress thanks to the
magic of Custom Fields. Simply make each item listing a Post
and use Custom Fields to give any special information (download
size, author URL etc) and then output them on the Post. In many
ways a freebie aggregator is similar to the Design Gallery theme
covered above, only instead of users visiting a design site they are
downloading an item.

http://mobilepress.co.za
http://mobilepress.co.za
http://www.webcredible.co.uk/user-friendly-resources/web-usability/mobile-guidelines.shtml
http://www.webcredible.co.uk/user-friendly-resources/web-usability/mobile-guidelines.shtml
http://brusheezy.com
http://qbrushes.com

Innovative	Ways	to	Use	WordPress�01

15.	WordPress	as	a	Twitter	Clone

OK you can’t really make a Twitter clone, but you can do some neat
quasi-twitter stuff using the Prologue theme that the Automattic
folks released – http://en.blog.wordpress.com/2008/01/28/
introducing-prologue/

It’s actually designed to act as a messaging system for a smallish
group of people (think less than 20) and Automattic apparently use
a password protected version for their internal team messaging.
Prologue is a great example of just how flexible the WordPress
engine is.

16.	WordPress	as	a	Magazine	or	
News	Site

The basics of building a magazine theme have all been covered
in this book. Essentially a magazine theme is a combination of a
clever design and using a lot of WP_Query to do custom queries. So
for example if your theme has a set of featured news this would be
done in much the same way as we featured a blog post in Creatif
Blog. If you wanted to show the five most recent posts from a
certain category, you simply run a WP_Query on that category in a
similar manner to how we extracted archived posts in Creatif Blog.

A great tutorial on the basics of building a magazine theme can be
found at

http://nettuts.com/tutorials/wordpress/build-a-newspaper-theme-
with-wp_query-and-the-960-css-framework or you can simply grab
a copy of a magazine theme like Mimbo – http://www.darrenhoyt.
com/2007/08/05/wordpress-magazine-theme-released/ and
retheme the main functionality.

http://en.blog.wordpress.com/2008/01/28/introducing-prologue/
http://en.blog.wordpress.com/2008/01/28/introducing-prologue/
http://nettuts.com/tutorials/wordpress/build-a-newspaper-theme-with-wp_query-and-the-960-css-framework/
http://nettuts.com/tutorials/wordpress/build-a-newspaper-theme-with-wp_query-and-the-960-css-framework/
http://www.darrenhoyt.com/2007/08/05/wordpress-magazine-theme-released/
http://www.darrenhoyt.com/2007/08/05/wordpress-magazine-theme-released/

Innovative	Ways	to	Use	WordPress�02

Even	More	Ideas	on	Theming	
WordPress

The tools that we’ve covered in this book coupled with the
astounding range of plugins available at http://wordpress.org/
extend/plugins/ mean you have everything you need to take
WordPress and build almost any type of site.

The defining principle behind using WordPress to build non-
standard sites is to rethink Posts to be pretty much whatever data
type you want. Whether it’s real estate listings – http://themeforest.
net/item/real-estate-theme/17730 – or address book entries –
http://designintellection.com/downloads/wp-contact-manager/ – or
any of the other examples we covered above.

Abstracting out the Post idea and coupling this with clever visual
design means WordPress can be the back end of almost any type
of data site you can think of. Add in the user functionality and
plugin extensions and you’ve got one heck of a site engine!

http://wordpress.org/extend/plugins/
http://wordpress.org/extend/plugins/
http://themeforest.net/item/real-estate-theme/17730
http://themeforest.net/item/real-estate-theme/17730
http://designintellection.com/downloads/wp-contact-manager/

Afterword
As you’ve learnt in this book, WordPress is not only easy to use,
but it is also so flexible in its architecture that you can bend it to
almost any project. With WordPress in your toolkit, you’ll be able
to deliver fast and effective solutions to almost any website project
that comes your way.

Whatever you choose to do with WordPress we wish you success
in your theming endeavors and hope this book has been an
inspiration and a guide to getting you on your way!

Collis Ta’eed & Harley Alexander

